Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres








Gamme d'année
1.
Experimental & Molecular Medicine ; : 284-292, 2001.
Article Dans Anglais | WPRIM | ID: wpr-144630

Résumé

3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.


Sujets)
Humains , Chlorométhyl cétones d'acides aminés/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Acide bongkrékique/pharmacologie , Caspases/métabolisme , Lignée cellulaire , Ciclosporine/pharmacologie , Cytochromes c/effets des médicaments et des substances chimiques , Activation enzymatique , Agranulocytes/cytologie , Ligands , Glycoprotéines membranaires/métabolisme , Tubercidine/pharmacologie , Cellules U937
2.
Experimental & Molecular Medicine ; : 284-292, 2001.
Article Dans Anglais | WPRIM | ID: wpr-144618

Résumé

3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.


Sujets)
Humains , Chlorométhyl cétones d'acides aminés/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Acide bongkrékique/pharmacologie , Caspases/métabolisme , Lignée cellulaire , Ciclosporine/pharmacologie , Cytochromes c/effets des médicaments et des substances chimiques , Activation enzymatique , Agranulocytes/cytologie , Ligands , Glycoprotéines membranaires/métabolisme , Tubercidine/pharmacologie , Cellules U937
3.
Experimental & Molecular Medicine ; : 197-203, 2000.
Article Dans Anglais | WPRIM | ID: wpr-25123

Résumé

3-Deazaadenosine (DZA), one of the potent inhibitors of S-adenosylhomocysteine hydrolase, is known to possess several biological properties including an induction of apoptosis. To evaluate a possibility that DZA may be utilized for the treatment of human leukemia, we studied molecular events of cell death induced by DZA in human leukemia HL-60 and U-937 cells. DZA induced a specific cleavage of poly ADP-ribose polymerase (PARP) and an activation of the cysteine protease caspase-3/CPP32 which is known to cleave PARP. DZA-mediated nuclear DNA-fragmentation was completely blocked in the presence of a universal inhibitor of caspases (z-VAD-fmk) or the specific inhibitor of caspase-3 (z-DEVD-fmk) unlike of cycloheximide (CHX). DNA fragmentation was preceded by the lowering of c-myc mRNA in the DZA treated cells. In addition, DZA-induced apoptosis was blocked by pretreatment with adenosine transporter inhibitors such as nitrobenzylthioinosine (NBTI) and dipyridamole (DPD). Taken together, these results demonstrate that DZA-induced apoptosis initiated through an active transport of DZA into human leukemia cells, is dependent on the caspase-3-like activity without de novo synthesis of proteins and possibly involves c-myc down-regulation.


Sujets)
Humains , Adénosine/métabolisme , Apoptose , Transport biologique actif , Protéines de transport/métabolisme , Caspases/métabolisme , Régulation négative , Activation enzymatique , Gènes myc , Cellules HL-60 , Leucémie aiguë promyélocytaire/traitement médicamenteux , Thioinosine/analogues et dérivés , Facteurs de transcription/génétique , Tubercidine/pharmacologie , Cellules U937
4.
Southeast Asian J Trop Med Public Health ; 1997 Mar; 28(1): 22-31
Article Dans Anglais | IMSEAR | ID: sea-34071

Résumé

Influx of the purine nucleoside, adenosine, was assessed in erythrocytes from both normal subjects and from subjects with a range of genetically determined erythrocyte disorders from Myanmar. The latter included alpha-thalassemia major (Myanmar variant), beta-thalassemia major (Myanmar variant), beta-thalassemia trait, HbEE and HbAE erythrocytes and two variants of glucose-6-phosphate dehydrogenase (G6PDH) deficiency. Significant reductions (p < 0.01) of adenosine influx were observed in erythrocytes from individuals with alpha- and beta-thalassemia major and severe G6PDH deficiency. Abnormal erythrocytes infected with the malarial parasites, Plasmodium falciparum or Plasmodium vivax, demonstrated a reduction in adenosine transport which correlated with the proportion of abnormal erythrocytes present in the samples obtained. The effect of nitrobenzylthioinosine (NBMPR) on adenosine influx was explored in normal and abnormal erythrocytes. In all these cases, NBMPR completely inhibited the transport of adenosine. However, transport of adenosine into P. falciparum and P. vivax-infected normal erythrocytes and abnormal cells was only inhibited 50-60% by NBMPR. The combination of tubercidin and NBMPR completely blocked adenosine transport into both normal and abnormal erythrocytes infected with either P. falciparum or P. vivax.


Sujets)
Adénosine/sang , Adulte , Marqueurs d'affinité/pharmacologie , Enfant , Érythrocytes/métabolisme , Érythrocytes anormaux/métabolisme , Femelle , Déficit en glucose-6-phosphate-déshydrogénase/métabolisme , Hémoglobinopathies/sang , Humains , Paludisme à Plasmodium falciparum/sang , Paludisme à Plasmodium vivax/sang , Mâle , Myanmar , Thioinosine/analogues et dérivés , Tubercidine/pharmacologie
SÉLECTION CITATIONS
Détails de la recherche