Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
1.
Journal of Veterinary Science ; : 441-447, 2013.
Article Dans Anglais | WPRIM | ID: wpr-43063

Résumé

Rabbit hemorrhagic disease (RHD) is contagious and highly lethal. Commercial vaccines against RHD are produced from the livers of experimentally infected rabbits. Although several groups have reported that recombinant subunit vaccines against rabbit hemorrhagic disease virus (RHDV) are promising, application of the vaccines has been restricted due to high production costs or low yield. In the present study, we performed codon optimization of the capsid gene to increase the number of preference codons and eliminate rare codons in Spodoptera frugiperda 9 (Sf9) cells. The capsid gene was then subcloned into the pFastBac plasmid, and the recombinant baculoviruses were identified with a plaque assay. As expected, expression of the optimized capsid protein was markedly increased in the Sf9 cells, and the recombinant capsid proteins self-assembled into virus-like particles (VLPs) that were released into the cell supernatant. Rabbits inoculated with the supernatant and the purified VLPs were protected against RHDV challenge. A rapid, specific antibody response against RHDV was detected by an ELISA in all of the experimental groups. In conclusion, this strategy of producing a recombinant subunit vaccine antigen can be used to develop a low-cost, insect cell-derived recombinant subunit vaccine against RHDV.


Sujets)
Animaux , Lapins , Antigènes viraux/génétique , Infections à Caliciviridae/prévention et contrôle , Protéines de capside/génétique , Techniques de culture cellulaire/méthodes , Codon/génétique , Test ELISA/médecine vétérinaire , Régulation de l'expression des gènes viraux , Virus de la maladie hémorragique du lapin/génétique , Protéines recombinantes/génétique , Cellules Sf9 , Spodoptera , Protéines virales structurales/génétique , Vaccins antiviraux/génétique
SÉLECTION CITATIONS
Détails de la recherche