Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Genomics, Proteomics & Bioinformatics ; (4): 311-318, 2019.
Artigo em Inglês | WPRIM | ID: wpr-772934

RESUMO

Next-generation sequencing has allowed identification of millions of somatic mutations in human cancer cells. A key challenge in interpreting cancer genomes is to distinguish drivers of cancer development among available genetic mutations. To address this issue, we present the first web-based application, consensus cancer driver gene caller (C), to identify the consensus driver genes using six different complementary strategies, i.e., frequency-based, machine learning-based, functional bias-based, clustering-based, statistics model-based, and network-based strategies. This application allows users to specify customized operations when calling driver genes, and provides solid statistical evaluations and interpretable visualizations on the integration results. C is implemented in Python and is freely available for public use at http://drivergene.rwebox.com/c3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA