Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Korean Neurosurgical Society ; : 864-872, 2021.
Artigo em Inglês | WPRIM | ID: wpr-915591

RESUMO

Objective@#: The aim of our study is to investigate the cytotoxic, antioxidant, and antimicrobial effects of newly synthesized boron compounds in U87MG glioblastoma cell treatment. @*Methods@#: We synthesized boron glycine monoester (BGM) and boron glycine diester (BGD) structures containing boron atoms and determined their cytotoxic activities on glioblastoma by the MTT method. The IC50 value was calculated with GraphPad Prism 5.0 program. The IC50 values were administered 48 hours on U87MG glioblastoma cell. Catalase (CAT), acid phosphatase (ACP) and alkaline phosphatase (ALP) enzyme activity, malondialdehyde (MDA), total glutathione (GSH), and total protein levels were detected using spectrophotometric methods. We determined the antimicrobial activities of BGM and BGD with the disc diffusion method. @*Results@#: After 48 hours of BGM and BGD application to U87MG glioblastoma cells, we found the IC50 value as 6.6 mM and 26 mM, respectively. CAT and ACP enzyme activities were decreased in BGM and BGD groups. MDA which is a metabolite of lipid peroxidation was increased in both boron compounds groups. GSH level was reduced especially in BGD group. BGM and BGD have been found to be antimicrobial effects. @*Conclusion@#: Boron compounds, especially the BGM, can provide a new therapeutic approach for the treatment of glioblastoma with their anticancer, antioxidant, and antimicrobial effects.

2.
Journal of Korean Neurosurgical Society ; : 382-388, 2019.
Artigo em Inglês | WPRIM | ID: wpr-788796

RESUMO

OBJECTIVE: The primary aim of this investigation was to explore the nature of dura mater biomechanics following the introduction of puncture defect(s).METHODS: Twenty-eight dura mater specimens were collected during autopsy from the department of forensic medicine of the authors' institution. Specimens were divided randomly into one of four groups : group I (cranial dura mater; n=7), group II (cranial dura mater with one puncture defect; n=7); group III (cranial dura mater with two puncture defects; n=7), and group IV (cranial dura mater with three puncture defects; n=7).RESULTS: The mean±standard deviation tensile strengths of the dura mater were 8.35±3.16, 8.22±3.32, 7.13±1.77, and 6.94±1.93 MPa for groups I, II, III, and IV, respectively. There was no statistical difference between all groups. A single, two or more punctures of the dura mater using a 20-gauge Quincke needle did not affect cranial dura tensile strength.CONCLUSION: This biomechanical study may contribute to the future development of artificial dura mater substitutes and medical needles that have a lower negative impact on the biomechanical properties of dura mater.


Assuntos
Autopsia , Fenômenos Biomecânicos , Dura-Máter , Medicina Legal , Técnicas In Vitro , Agulhas , Punções , Resistência à Tração
3.
Journal of Korean Neurosurgical Society ; : 382-388, 2019.
Artigo em Inglês | WPRIM | ID: wpr-765369

RESUMO

OBJECTIVE: The primary aim of this investigation was to explore the nature of dura mater biomechanics following the introduction of puncture defect(s). METHODS: Twenty-eight dura mater specimens were collected during autopsy from the department of forensic medicine of the authors' institution. Specimens were divided randomly into one of four groups : group I (cranial dura mater; n=7), group II (cranial dura mater with one puncture defect; n=7); group III (cranial dura mater with two puncture defects; n=7), and group IV (cranial dura mater with three puncture defects; n=7). RESULTS: The mean±standard deviation tensile strengths of the dura mater were 8.35±3.16, 8.22±3.32, 7.13±1.77, and 6.94±1.93 MPa for groups I, II, III, and IV, respectively. There was no statistical difference between all groups. A single, two or more punctures of the dura mater using a 20-gauge Quincke needle did not affect cranial dura tensile strength. CONCLUSION: This biomechanical study may contribute to the future development of artificial dura mater substitutes and medical needles that have a lower negative impact on the biomechanical properties of dura mater.


Assuntos
Autopsia , Fenômenos Biomecânicos , Dura-Máter , Medicina Legal , Técnicas In Vitro , Agulhas , Punções , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA