Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros








Intervalo de ano
1.
Tissue Engineering and Regenerative Medicine ; (6): 787-800, 2020.
Artigo em Inglês | WPRIM | ID: wpr-904004

RESUMO

Microfluidic technologies have emerged as a powerful tool that can closely replicate the in-vivo physiological conditions of organ systems. Assisted reproductive technology (ART), while being able to achieve successful outcomes, still faces challenges related to technical error, efficiency, cost, and monitoring/assessment. In this review, we provide a brief overview of the uses of microfluidic devices in the culture, maintenance and study of ovarian follicle development for experimental and therapeutic applications. We discuss existing microfluidic platforms for oocyte and sperm selection and maintenance, facilitation of fertilization by in-vitro fertilization/intracytoplastimc sperm injection, and monitoring, selection and maintenance of resulting embryos. Furthermore, we discuss the possibility of future integration of these technologies onto a single platform and the limitations facing the development of these systems. In spite of these challenges, we envision that microfluidic systems will likely evolve and inevitably revolutionize both fundamental, reproductive physiology/toxicology research as well as clinically applicable ART.

2.
Tissue Engineering and Regenerative Medicine ; (6): 787-800, 2020.
Artigo em Inglês | WPRIM | ID: wpr-896300

RESUMO

Microfluidic technologies have emerged as a powerful tool that can closely replicate the in-vivo physiological conditions of organ systems. Assisted reproductive technology (ART), while being able to achieve successful outcomes, still faces challenges related to technical error, efficiency, cost, and monitoring/assessment. In this review, we provide a brief overview of the uses of microfluidic devices in the culture, maintenance and study of ovarian follicle development for experimental and therapeutic applications. We discuss existing microfluidic platforms for oocyte and sperm selection and maintenance, facilitation of fertilization by in-vitro fertilization/intracytoplastimc sperm injection, and monitoring, selection and maintenance of resulting embryos. Furthermore, we discuss the possibility of future integration of these technologies onto a single platform and the limitations facing the development of these systems. In spite of these challenges, we envision that microfluidic systems will likely evolve and inevitably revolutionize both fundamental, reproductive physiology/toxicology research as well as clinically applicable ART.

3.
Childhood Kidney Diseases ; : 67-76, 2019.
Artigo em Inglês | WPRIM | ID: wpr-785581

RESUMO

Kidney disease is a major global health issue. Hemodialysis and kidney transplantation have been used in the clinic to treat renal failure. However, the dialysis is not an effective long-term option, as it is unable to replace complete renal functions. Kidney transplantation is the only permanent treatment for end-stage renal disease (ESRD), but a shortage of implantable kidney tissues limits the therapeutic availability. As such, there is a dire need to come up with a solution that provides renal functions as an alternative to the current standards. Recent advances in cellbased therapy have offered new therapeutic options for the treatment of damaged kidney tissues. Particularly, cell secretome therapy utilizing bioactive compounds released from therapeutic cells holds significant beneficial effects on the kidneys. This review will describe the reno-therapeutic effects of secretome components derived from various types of cells and discuss the development of efficient delivery methods to improve the therapeutic outcomes.


Assuntos
Diálise , Saúde Global , Rim , Nefropatias , Falência Renal Crônica , Transplante de Rim , Medicina Regenerativa , Diálise Renal , Insuficiência Renal
4.
Korean Journal of Urology ; : 412-421, 2015.
Artigo em Inglês | WPRIM | ID: wpr-95913

RESUMO

The prevalence of renal disease continues to increase worldwide. When normal kidney is injured, the damaged renal tissue undergoes pathological and physiological events that lead to acute and chronic kidney diseases, which frequently progress to end stage renal failure. Current treatment of these renal pathologies includes dialysis, which is incapable of restoring full renal function. To address this issue, cell-based therapy has become a potential therapeutic option to treat renal pathologies. Recent development in cell therapy has demonstrated promising therapeutic outcomes, in terms of restoration of renal structure and function impaired by renal disease. This review focuses on the cell therapy approaches for the treatment of kidney diseases, including various cell sources used, as well recent advances made in preclinical and clinical studies.


Assuntos
Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Fetais/transplante , Rim/citologia , Nefropatias/terapia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/métodos
5.
Experimental & Molecular Medicine ; : e57-2013.
Artigo em Inglês | WPRIM | ID: wpr-209544

RESUMO

The field of tissue engineering has made steady progress in translating various tissue applications. Although the classical tissue engineering strategy, which involves the use of culture-expanded cells and scaffolds to produce a tissue construct for implantation, has been validated, this approach involves extensive cell expansion steps, requiring a lot of time and laborious effort before implantation. To bypass this ex vivo process, a new approach has been introduced. In situ tissue regeneration utilizes the body's own regenerating capacity by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the site of injury. This approach relies on development of a target-specific biomaterial scaffolding system that can effectively control the host microenvironment and mobilize host stem/progenitor cells to target tissues. An appropriate microenvironment provided by implanted scaffolds would facilitate recruitment of host cells that can be guided to regenerating structural and functional tissues.


Assuntos
Animais , Humanos , Regeneração Tecidual Guiada/métodos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais
6.
International Neurourology Journal ; : 109-119, 2011.
Artigo em Inglês | WPRIM | ID: wpr-172516

RESUMO

Neurogenic bladder is a general term encompassing various neurologic dysfunctions of the bladder and the external urethral sphincter. These can be caused by damage or disease. Therapeutic management options can be conservative, minimally invasive, or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue possesses different functional characteristics than bladder tissue, numerous complications can ensue, including excess mucus production, urinary stone formation, and malignancy. As a result, investigators have sought after alternative solutions. Tissue engineering is a scientific field that uses combinations of cells and biomaterials to encourage regeneration of new, healthy tissue and offers an alternative approach for the replacement of lost or deficient organs, including the bladder. Promising results using tissue-engineered bladder have already been obtained in children with neurogenic bladder caused by myelomeningocele. Human clinical trials, governed by the Food and Drug Administration, are ongoing in the United States in both children and adults to further evaluate the safety and efficacy of this technology. This review will introduce the principles of tissue engineering and discuss how it can be used to treat refractory cases of neurogenic bladder.


Assuntos
Adulto , Criança , Humanos , Materiais Biocompatíveis , Meningomielocele , Muco , Manifestações Neurológicas , Regeneração , Medicina Regenerativa , Pesquisadores , Engenharia Tecidual , Estados Unidos , United States Food and Drug Administration , Uretra , Bexiga Urinária , Bexiga Urinaria Neurogênica , Cálculos Urinários
7.
Chonnam Medical Journal ; : 1-13, 2011.
Artigo em Inglês | WPRIM | ID: wpr-170949

RESUMO

Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.


Assuntos
Adulto , Feminino , Humanos , Líquido Amniótico , Materiais Biocompatíveis , Bioengenharia , Transplante de Células , Células Clonais , Clonagem de Organismos , Células-Tronco Embrionárias , Medicina Regenerativa , Células-Tronco , Doadores de Tecidos , Engenharia Tecidual , Transplantes
8.
Chonnam Medical Journal ; : 1-13, 2011.
Artigo em Inglês | WPRIM | ID: wpr-788193

RESUMO

Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.


Assuntos
Adulto , Feminino , Humanos , Líquido Amniótico , Materiais Biocompatíveis , Bioengenharia , Transplante de Células , Células Clonais , Clonagem de Organismos , Células-Tronco Embrionárias , Medicina Regenerativa , Células-Tronco , Doadores de Tecidos , Engenharia Tecidual , Transplantes
9.
Yonsei Medical Journal ; : 789-802, 2000.
Artigo em Inglês | WPRIM | ID: wpr-46745

RESUMO

The concept of cell transplantation using tissue engineering techniques has provided numerous possibilities in the area of urologic tissue reconstruction. Tissue engineering applications in the genitourinary tract system have been investigated in almost every tissue in order to improve, restore and replace existing tissue function. Although most reconstructive efforts still remain in the experimental stage, several technologies have been transferred to the bedside with satisfactory outcome. In this article, we describe tissue engineering approaches attempted in the genitourinary system for reconstruction.


Assuntos
Humanos , Animais , Engenharia Biomédica , Bexiga Urinária , Feto , Terapia Genética/métodos , Genitália , Rim , Ureter , Uretra , Sistema Urogenital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA