Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 51: 95-109, May. 2021. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1343466

RESUMO

Chloroplast biotechnology has emerged as a promissory platform for the development of modified plants to express products aimed mainly at the pharmaceutical, agricultural, and energy industries. This technology's high value is due to its high capacity for the mass production of proteins. Moreover, the interest in chloroplasts has increased because of the possibility of expressing multiple genes in a single transformation event without the risk of epigenetic effects. Although this technology solves several problems caused by nuclear genetic engineering, such as turning plants into safe bio-factories, some issues must still be addressed in relation to the optimization of regulatory regions for efficient gene expression, cereal transformation, gene expression in non-green tissues, and low transformation efficiency. In this article, we provide information on the transformation of plastids and discuss the most recent achievements in chloroplast bioengineering and its impact on the biopharmaceutical and agricultural industries; we also discuss new tools that can be used to solve current challenges for their successful establishment in recalcitrant crops such as monocots.


Assuntos
Transformação Genética , Produtos Biológicos , Cloroplastos , Produtos Agrícolas , Biotecnologia , Proteínas Recombinantes/biossíntese , Plantas Geneticamente Modificadas
2.
Electron. j. biotechnol ; 45: 1-9, May 15, 2020. ilus
Artigo em Inglês | LILACS | ID: biblio-1177370

RESUMO

BACKGROUND: Maize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop. RESULTS: In this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression­an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments. CONCLUSIONS: This paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.


Assuntos
Nicotiana/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Zea mays/genética , Proteínas de Fluorescência Verde/metabolismo , Transformação Genética , Biotecnologia , Reação em Cadeia da Polimerase , Plantas Geneticamente Modificadas , Plastídeos/genética , Proteínas de Fluorescência Verde/genética , Escherichia coli , Genoma de Cloroplastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA