Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 48(5): 408-414, 05/2015. graf
Artigo em Inglês | LILACS | ID: lil-744374

RESUMO

Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH.


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Transtorno Depressivo Maior/terapia , Custos de Cuidados de Saúde/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Transtornos Relacionados ao Uso de Substâncias/reabilitação , Diagnóstico Duplo (Psiquiatria) , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/economia , Inquéritos Epidemiológicos , Acessibilidade aos Serviços de Saúde/economia , Serviços de Saúde Mental/economia , Serviços de Saúde Mental/estatística & dados numéricos , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/economia , Estados Unidos
2.
Braz. j. med. biol. res ; 42(11): 1050-1057, Nov. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-529105

RESUMO

Sepsis involves a systemic inflammatory response of multiple endogenous mediators, resulting in many of the injurious and sometimes fatal physiological symptoms of the disease. This systemic activation leads to a compromised vascular response and endothelial dysfunction. Purine nucleotides interact with purinoceptors and initiate a variety of physiological processes that play an important role in maintaining cardiovascular function. The purpose of the present study was to investigate the effects of ATP on vascular function in a lipopolysaccharide (LPS) model of sepsis. LPS induced a significant increase in aortic superoxide production 16 h after injection. Addition of ATP to the organ bath incubation solution reduced superoxide production by the aortas of endotoxemic animals. Reactive Blue, an antagonist of the P2Y receptor, blocked the effect of ATP on superoxide production, and the nonselective P2Y agonist MeSATP inhibited superoxide production. Nitric oxide synthase (NOS) inhibition by L-NAME blocked vascular relaxation and reduced superoxide production in LPS-treated animals. In the presence of L-NAME there was no ATP effect on superoxide production. A vascular reactivity study showed that ATP increased maximal relaxation in LPS-treated animals compared to controls. The presence of ATP induced increases in Akt and endothelial NOS phosphorylated proteins in the aorta of septic animals. ATP reduces superoxide release resulting in an improved vasorelaxant response. Sepsis may uncouple NOS to produce superoxide. We showed that ATP through Akt pathway phosphorylated endothelial NOS and “re-couples” NOS function.


Assuntos
Animais , Masculino , Ratos , Trifosfato de Adenosina/farmacologia , Aorta Torácica/enzimologia , Endotélio Vascular/enzimologia , Óxido Nítrico Sintase/biossíntese , Nucleotídeos de Purina/fisiologia , Sepse/enzimologia , Superóxidos/metabolismo , Aorta Torácica/fisiopatologia , Endotélio Vascular/fisiopatologia , Lipopolissacarídeos , Fosforilação , Ratos Wistar , Sepse/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA