Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Tipo de estudo
Intervalo de ano
1.
Braz. j. med. biol. res ; 46(5): 447-453, maio 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-675674

RESUMO

This study tested the hypothesis that simvastatin treatment can improve cardiovascular and autonomic functions and membrane lipoperoxidation, with an increased effect when applied to physically trained ovariectomized rats. Ovariectomized rats were divided into sedentary, sedentary+simvastatin and trained+simvastatin groups (n = 8 each). Exercise training was performed on a treadmill for 8 weeks and simvastatin (5 mg/kg) was administered in the last 2 weeks. Blood pressure (BP) was recorded in conscious animals. Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses to BP changes. Cardiac vagal and sympathetic effects were determined using methylatropine and propranolol. Oxidative stress was evaluated based on heart and liver lipoperoxidation using the chemiluminescence method. The simvastatin-treated groups presented reduced body weight and mean BP (trained+simvastatin = 99 ± 2 and sedentary+simvastatin = 107 ± 2 mmHg) compared to the sedentary group (122 ± 1 mmHg). Furthermore, the trained group showed lower BP and heart rate compared to the other groups. Tachycardic and bradycardic responses were enhanced in both simvastatin-treated groups. The vagal effect was increased in the trained+simvastatin group and the sympathetic effect was decreased in the sedentary+simvastatin group. Hepatic lipoperoxidation was reduced in sedentary+simvastatin (≈21%) and trained+simvastatin groups (≈57%) compared to the sedentary group. Correlation analysis involving all animals demonstrated that cardiac lipoperoxidation was negatively related to the vagal effect (r = -0.7) and positively correlated to the sympathetic effect (r = 0.7). In conclusion, improvement in cardiovascular and autonomic functions associated with a reduction of lipoperoxidation with simvastatin treatment was increased in trained ovariectomized rats.


Assuntos
Animais , Feminino , Ratos , Sistema Nervoso Autônomo/efeitos dos fármacos , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipolipemiantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Sinvastatina/farmacologia , Sistema Nervoso Autônomo/fisiologia , Luminescência , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal , Treinamento Resistido
2.
Braz. j. med. biol. res ; 41(9): 804-808, Sept. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-492874

RESUMO

The objective of the present study was to identify metabolic, cardiovascular and autonomic changes induced by fructose overload administered in the drinking water of rats for 8 weeks. Female Wistar rats (200-220 g) were divided into 2 groups: control (N = 8) and fructose-fed rats (N = 5; 100 mg/L fructose in drinking water for 8 weeks). The autonomic control of heart rate was evaluated by pharmacological blockade using atropine (3 mg/kg) and propranolol (4 mg/kg). The animals were submitted to an intravenous insulin tolerance test (ITT) and to blood glucose measurement. The fructose overload induced a significant increase in body weight (~10 percent) and in fasting glycemia (~28 percent). The rate constant of glucose disappearance (KITT) during ITT was lower in fructose-fed rats (3.25 ± 0.7 percent/min) compared with controls (4.95 ± 0.3 percent/min, P < 0.05) indicating insulin resistance. The fructose-fed group presented increased arterial pressure compared to controls (122 ± 3 vs 108 ± 1 mmHg, P < 0.05) and a reduction in vagal tonus (31 ± 9 vs 55 ± 5 bpm in controls, P < 0.05). No changes in sympathetic tonus were observed. A positive correlation, tested by the Pearson correlation, was demonstrable between cardiac vagal tonus and KITT (r = 0.8, P = 0.02). These data provided new information regarding the role of parasympathetic dysfunction associated with insulin resistance in the development of early metabolic and cardiovascular alterations induced by a high fructose diet.


Assuntos
Animais , Feminino , Ratos , Frutose/administração & dosagem , Resistência à Insulina/fisiologia , Sistema Nervoso Parassimpático/fisiopatologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA