Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
2.
Artigo em Inglês | IMSEAR | ID: sea-159227

RESUMO

Many neurotherapeutics are unsuccessful in treating CNS disorders because they cannot be effectively drug delivered. Drug delivery to the brain is a challenge even though there is relatively high blood flow. There are two physiological barriers likes blood-brain barrier and blood-cerebrospinal fluid barrier which separates the brain from its blood supply controlling the transport of compounds. Many of the brain or CNS associated diseases remain untreated by effective therapies. This is not because there is a lack of candidate drugs but due to the inability of many therapeutic molecules to cross the BBB, the BCSFB or other specialized CNS barriers to reach the specific areas of brain. Hence there is a need in the modern approaches and present insights into using ligand conjugation and nanotechnology to target the BBB via different transport pathways and mechanisms. The field of novel drug delivery system has fully emerged and came into existence as an ideal approach of drug targeting and delivery to brain. The new approaches of drug delivery to brain help in successful transporting drugs across the BBB.

3.
Artigo em Inglês | IMSEAR | ID: sea-151965

RESUMO

Chalcones is an important auxiliary having various important clinical applications. A series of Chalcones as antileishmanial agents by were reported. Three dimensional quantitative structure-activity relationship (3DQSAR), including, were performed to elucidate the 3D structural features which are important for the antileishmanial activity. The results of 3D QSAR model (q2 = 0.8100, r2 = 0.9355,) exhibited the highly degree of statistical significance and good predictive ability. The results generated 3D QSAR can provide important information about the structural characteristics which are contributors of the inhibitory potency of chalcones. In addition, docking analysis and pharmacophore mapping was applied to identify the binding modes between the ligands and the Trypanothione reductase and structural features of the ligands which are important for the biological activity of the molecules. The information obtained from this study could provide vital information for future development of potent instructions for the further development of potent antileishmanial agents as trypanothione reductase inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA