Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Biosci ; 2020 Sep; : 1-17
Artigo | IMSEAR | ID: sea-214240

RESUMO

Ensuring agricultural food security is a major concern for the future world, and being the second mostconsumed crop, rice yield needs an urgent upliftment. Grain yield is a pleiotropic trait that employs a plethoraof genes functioning in complex signalling cascades. The yield related genes are controlled by variousregulatory factors including the microRNAs (miRNAs), the small 20–22 nucleotide (nt) non-coding RNAs,which have emerged as the master ribo-regulators of eukaryotic genes. Plant miRNAs can bind to highlycomplementary sequences in the target messenger RNAs (mRNAs) and negatively regulate gene expression tocoordinate the various biological processes involved in plant development. In rice, an ideal plant architecture(IPA) has been regarded as the key to attain high yield and several miRNAs have been deciphered to playimportant roles in orchestrating vital regulatory procedures for achieving optimum plant morphological yieldrelated traits like less unproductive tillers, more panicle branches and heavier grains. In this review, we presentand discuss the various genetic engineering strategies undertaken to manipulate the miRNA-mRNA expressionlevels in order to achieve improved grain output by modulation of rice plant architecture and recent advancesmade in this regard

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA