Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 2404-2416, 2020.
Artigo em Inglês | WPRIM | ID: wpr-881120

RESUMO

Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation,

2.
Acta Pharmaceutica Sinica B ; (6): 2198-2211, 2020.
Artigo em Inglês | WPRIM | ID: wpr-881106

RESUMO

Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal-organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The

3.
Acta Pharmaceutica Sinica B ; (6): 165-177, 2018.
Artigo em Inglês | WPRIM | ID: wpr-690922

RESUMO

Mesoporous silica nanoparticles (MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume, selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly, the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.

4.
Journal of Zhejiang Chinese Medical University ; (6)2006.
Artigo em Chinês | WPRIM | ID: wpr-563820

RESUMO

TCM has marked cure effect on cirrhosis.Referring to "Guideline to Clinical Research of New Chinese Medicine" in differentiation types of virus hepatitis,it summarizes the varieties of Chinese patent medicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA