Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Gut and Liver ; : 558-565, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1000374

RESUMO

Background/Aims@#Among several methods used to prevent endoscopic submucosal dissection (ESD) bleeding, the recently developed hemostatic powder (HP) has few technical limitations and is relatively easy-to-use. This study aimed to analyze the hemostatic effects and mechanisms of two HPs using a porcine upper gastrointestinal hemorrhage model. @*Methods@#We evaluated HPs (Endospray and epidermal growth factor [EGF]-endospray) for adhesion, waterproofing ability, permeability, and absorption in vitro. ESD was performed to induce bleeding ulcers in the porcine stomachs. In a total of three pigs, three bleeding ulcers per animal were generated. Hemostasis and rebleeding were evaluated endoscopically. After 72 hours, the animals were sacrificed, and histologically analyzed. @*Results@#The water absorption of HPs was over 20 times the initial value within 30 minutes. The gelated HPs completely blocked water penetration into the applied site within 5 minutes and strongly adhered to the Petri-dish surface for up to 6 hours. The initial hemostasis rates within 5 minutes were 33.3%, 100.0%, and 66.7%, and the rebleeding rates at 6 to 72 hours after HP application were 33.3%, 16.7%, and 33.3% (control, Endospray, and EGF-endospray groups, respectively). Histological analysis revealed the thickness of the regenerated mucosa (522.1, 514.5, and 680.3 µm) and the submucosal layer (1,510.3, 2,848.2, and 3,062.3 µm) and the number of newly formed blood vessels (15.3, 17.9, and 20.5) in the control, Endospray, and EGFendospray groups, respectively. @*Conclusions@#The endoscopic HPs demonstrated the ability to elicit effective initial hemostasis and the histological ulcer-healing effect of EGF in an animal model of hemorrhagic gastric ulcers.

2.
Tissue Engineering and Regenerative Medicine ; (6): 233-241, 2017.
Artigo em Inglês | WPRIM | ID: wpr-644034

RESUMO

We investigated the utility of the duck-feet collagen extraction patching procedure in the traumatic tympanic membrane (TM) perforation via a comparison with spontaneous healing or paper patch. Fifty-six ears of adult male Sprague-Dawley rats, each weighing in the range of 250 to 300 g, were used for the animal studies. Sixteen rats had one-side ear in the control group and the opposite-side ear in the treated groups. The remaining twelve rats had a one-side ear with the duck-feet collagen patch and the opposite-side ear with a paper patch. The proliferating cell nuclear antigen (PCNA) expression cells were calculated among the 200 basal cells, and the expression percentage was identified as the labeling index. The healing of the perforation in the duck-feet collagen patch group was confirmed to be more rapid compared to the healing of the other groups. PCNA staining was observed in the migrating portion of PCNA enhanced cell to collagen scaffold in Post operative day (POD) 7 of collagen patch group. Thus, the adhesive effect of the duck-feet collagen patch to perforated margin was better than that of the paper patch. After completing the healing process, the collagen patch shrank and detached from the tympanic membrane (POD 14). In this study, we confirmed that the use of a duck-feet collagen patch had the advantage of early healing, inducing natural TM contour, and disappearing ability after the patch effect is complete.


Assuntos
Adulto , Animais , Humanos , Masculino , Ratos , Adesivos , Colágeno , Patos , Orelha , Orelha Média , Fibroínas , , Antígeno Nuclear de Célula em Proliferação , Ratos Sprague-Dawley , Perfuração da Membrana Timpânica , Membrana Timpânica
3.
Tissue Engineering and Regenerative Medicine ; (6): 218-226, 2016.
Artigo em Inglês | WPRIM | ID: wpr-649717

RESUMO

Hydrocolloid dressings have been developed for many types of wound healing. In particular, dressing is a critical component in the successful recover of burn injuries, which causes a great number of people to not only suffer from physical but also psychological and economic anguish each year. Additionally, silk fibroin is the safest material for tissue engineering due to biocompatibility. In this study, we fabricated hydrocolloid dressings incorporating silk fibroin nanoparticles to enhance the efficacy of hydrocolloid dressing and then use this silk fibroin nanoparticle hydrocolloid dressing (SFNHD) in animal models to treat burn wounds. The structures and properties of SFNHD were characterized using tensile strength and Cell Counting Kit-8 assay. The results indicated the structural stability and the cellular biocompatibility of the hydrocolloid dressing suggesting that SFNHD can be applied to the treatment of wounds. To demonstrate the capacity of a silk fibroin hydrocolloid dressing to treat burn wounds, we compared SFNHD to gauze and Neoderm®, a commercially available dressing. This study clearly demonstrated accelerated wound healing with greater wound structural integrity and minimal wound size after treatment with SFNHD. These observations indicate that SFNHD may be an improvement upon current standard dressings such as Gauze and Neoderm® for burn wounds.


Assuntos
Bandagens , Curativos Hidrocoloides , Queimaduras , Contagem de Células , Coloides , Fibroínas , Modelos Animais , Nanopartículas , Seda , Estresse Psicológico , Resistência à Tração , Engenharia Tecidual , Cicatrização , Ferimentos e Lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA