Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Clinics ; 77: 100062, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394294

RESUMO

Abstract Introduction: Short-Chain Fatty Acids (SCFA) are products of intestinal microbial metabolism that can reach the brain and alter microglia in health and disease contexts. However, data are conflicting on the effect of acetate, the most abundant SCFA in the blood, in these cells. Objective: The authors aimed to investigate acetate as a modulator of the inflammatory response in microglia stimulated with LPS. Method: The authors used an immortalized cell line, C8-B4, and primary cells for in vitro treatments with acetate and LPS. Cell viability was analyzed by MTT, cytokine by RT-PCR, ELISA, and flow cytometry. The authors also performed in vivo and in silico analyses to study the role of acetate and the TNF-α contribution to the development of Experimental Autoimmune Encephalomyelitis (EAE). Results: Acetate co-administered with LPS was able to exacerbate the production of pro-inflammatory cytokines at gene and protein levels in cell lines and primary culture of microglia. However, the same effects were not observed when acetate was administered alone or as pretreatment, prior to the LPS stimulus. Additionally, pharmacological inhibition of histone deacetylase concomitantly with acetate and LPS led to decreased TNF-α production. In silico analysis showed a crucial role of the TNF-α pathway in EAE development. Moreover, acetate administration in vivo during the initial phase of EAE led to a better disease outcome and reduced TNF-α production. Conclusion: Treatment with acetate was able to promote the production of TNF-α in a concomitant LPS stimulus of microglia. However, the immune modulation of microglia by acetate pretreatment may be a component in the generation of future therapies for neurodegenerative diseases. HIGHLIGHTS Acetate was able to exacerbate the production of TNF-α in microglia. Acetate administered as pre-treatment to LPS acts as an anti-inflammatory. Histone deacetylase decreased TNF-α production in Acetate- and LPS-treated cells. Depending on the time of administration, Acetate modulates microglia's activation. Acetate may threaten neurodegenerative and neuropsychiatric diseases.

2.
Clinics ; 76: e1821, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153986

RESUMO

OBJECTIVES: This study aimed to evaluate the potential anti-inflammatory effects of vitamin D supplementation under uremic conditions, both in vivo and in vitro, and its effects on the parameters of mineral metabolism. METHODS: Thirty-two hemodialysis patients were randomly assigned to receive placebo (N=14) or cholecalciferol (N=18) for six months. Serum levels of calcium, phosphate, total alkaline phosphatase, intact parathyroid hormone (iPTH), and vitamin D were measured at baseline and after three and six months. The levels of fibroblast growth factor-23 (FGF-23), interleukin-1β (IL-1β), and high-sensitivity C-reactive protein (hs-CRP) were also measured at baseline and at six months. Human monocytes were used for in vitro experiments and treated with cholecalciferol (150 nM) and uremic serum. Cell viability, reactive oxygen species (ROS) production, and cathelicidin (CAMP) expression were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dichloro-dihydro-fluorescein diacetate assay, and real time-quantitative polymerase chain reaction, respectively. RESULTS: Both patient groups were clinically and biochemically similar at baseline. After six months, the levels of vitamin D and iPTH were higher and lower, respectively, in the cholecalciferol group than in the placebo group (p<0.05). There was no significant difference between the parameters of mineral metabolism, such as IL-1β and hs-CRP levels, in both groups. Treatment with uremic serum lowered the monocyte viability (p<0.0001) and increased ROS production (p<0.01) and CAMP expression (p<0.05); these effects were counterbalanced by cholecalciferol treatment (p<0.05). CONCLUSIONS: Thus, cholecalciferol supplementation is an efficient strategy to ameliorate hypovitaminosis D in hemodialysis patients, but its beneficial effects on the control of secondary hyperparathyroidism are relatively unclear. Even though cholecalciferol exhibited anti-inflammatory effects in vitro, its short-term supplementation was not effective in improving the inflammatory profile of patients on hemodialysis, as indicated by the IL-1β and hs-CRP levels.


Assuntos
Humanos , Deficiência de Vitamina D , Colecalciferol/uso terapêutico , Hormônio Paratireóideo/uso terapêutico , Vitamina D , Diálise Renal , Suplementos Nutricionais , Anti-Inflamatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA