Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chin. med. j ; Chin. med. j;(24): 127-134, 2019.
Artigo em Inglês | WPRIM | ID: wpr-772870

RESUMO

BACKGROUND@#Desminopathy, a hereditary myofibrillar myopathy, mainly results from the desmin gene (DES) mutations. Desminopathy involves various phenotypes, mainly including different cardiomyopathies, skeletal myopathy, and arrhythmia. Combined with genotype, it helps us precisely diagnose and treat for desminopathy.@*METHODS@#Sanger sequencing was used to characterize DES variation, and then a minigene assay was used to verify the effect of splice-site mutation on pre-mRNA splicing. Phenotypes were analyzed based on clinical characteristics associated with desminopathy.@*RESULTS@#A splicing mutation (c.735+1G>T) in DES was detected in the proband. A minigene assay revealed skipping of the whole exon 3 and transcription of abnormal pre-mRNA lacking 32 codons. Another affected family member who carried the identical mutation, was identified with a novel phenotype of desminopathy, non-compaction of ventricular myocardium. There were 2 different phenotypes varied in cardiomyopathy and skeletal myopathy among the 2 patients, but no significant correlation between genotype and phenotype was identified.@*CONCLUSIONS@#We reported a novel phenotype with a splicing mutation in DES, enlarging the spectrum of phenotype in desminopathy. Molecular studies of desminopathy should promote our understanding of its pathogenesis and provide a precise molecular diagnosis of this disorder, facilitating clinical prevention and treatment at an early stage.


Assuntos
Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático , Cardiomiopatias , Genética , Patologia , Desmina , Genética , Eletrocardiografia , Genótipo , Distrofias Musculares , Genética , Patologia , Mutação , Genética , Linhagem , Fenótipo
2.
Chin. med. sci. j ; Chin. med. sci. j;(4): 1-7, 2016.
Artigo em Inglês | WPRIM | ID: wpr-281459

RESUMO

Objective To identify the pathogenic variant responsible for restrictive cardiomyopathy (RCM) in a Chinese family.Methods Next generation sequencing was used for detecting the mutation and Results verified by sequencing. We used restriction enzyme digestion to test the mutation in the family members and 200 unrelated normal subjects without any cardiac inherited diseases when the mutation was identified.Results Five individuals died from cardiac diseases, two of whom suffered from sudden cardiac death. Two individuals have suffered from chronic cardiac disorders. Mutation analysis revealed a novel missense mutation in exon 7 of troponin I type 3 (TNNI3), resulting in substitution of serine (S) with proline (P) at amino acid position 150, which cosegregated with the disease in the family, which is predicted to be probably damaging using PolyPhen-2. The mutation was not detected in the 200 unrelated subjects we tested.Conclusion Using next generation sequencing, which has very recently been shown to be successful in identifying novel causative mutations of rare Mendelian disorders, we found a novel mutation of TNNI3 in a Chinese family with RCM.

3.
Chinese Journal of Pediatrics ; (12): 203-208, 2011.
Artigo em Chinês | WPRIM | ID: wpr-286130

RESUMO

<p><b>OBJECTIVE</b>Glycogen storage disease type Ib (GSDIb, MIM: 232220) is an autosomal recessive inborn error of metabolism caused by deficiency of the glucose-6-phosphate translocase. The clinical manifestations include symptoms and signs of both the typical GSDIa, including hepatomegaly, fasting hypoglycemia, lactic acidemia and hyperlipidemia, and the dysfunction of neutrophils of recurrent infection and neutropenia. More than 84 mutations have been identified since the discovery of the SLC37A4 gene as the disease causing gene. Up to date, 5 mutations in 4 Chinese patients were reported from Hong Kang and Taiwan. In order to see the spectrum of the SLC37A4 gene mutations and the correlation between genotype and phenotype in patients with GSDIb of the mainland of China, the authors investigated 17 GSDIb patients from 15 families in this study.</p><p><b>METHOD</b>Data of 17 patients from 12 provinces, 11 male and 6 female, aged 6 months to 35 years, were collected from the genetic clinics of Peking Union Medical College Hospital from Oct. 2006 to Mar. 2009. All of them were Han Chinese in ethnicity. Consanguineous status was confirmed in 2 unrelated patients. All patients were presented with hepatomegaly, fasting hypoglycemia, lactic acidemia, hyperlipidemia and neutropenia with variable frequency of infections. The full coding exons, their relevant exon-intron boundaries, and the 5'- and 3'-flanking regions of the SLC37A4 gene were amplified and directly sequenced. RT-PCR was performed to verify the effect of the 2 novel splicing mutations.</p><p><b>RESULT</b>A total of 11 mutations were identified in 15 families. Four mutations, p.Gly149Glu, p.Pro191Leu, p.Arg415X and c.1042_1043 del CT, were previously reported, and seven mutations, p. Leu23Arg, p.Gly115Arg, p.Gly281Val, p.Arg415Gly, c.784 + 1G > A, c.870 + 5G > A and c.1014_1120del107, were novel. The frequent mutations are p.Pro191Leu, p.Gly149Glu and c.870 + 5G > A, accounting for 37%, 15% and 11% of mutant alleles respectively. RT-PCR analysis of novel mutation c.784 + 1G > A confirmed the splicing of exon 5 of 159 bp, causing inframe deletion. While mutation c.870 + 5G > A was proved to cause exon 6, 86 bp, deletion causing frame-shift. Among 15 families, 12 genotypes were identified, including 3 with homozygous mutation and 9 with compound heterozygous mutations. Homozygous p.Pro191Leu mutation was the only genotype detected in more than 1 family and was found in 4 unrelated families, including 1 patient from consanguineous marriage.</p><p><b>CONCLUSION</b>A total of 11 SLC37A4 gene mutations were identified in 15 families of the mainland of China. The frequent mutations are p.Pro191Leu, p.Gly149Glu and c.870 + 5G > A. The number of Chinese SLC37A4 gene mutations was extended from 5 to 14.</p>


Assuntos
Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Antiporters , Genética , Análise Mutacional de DNA , Genótipo , Doença de Depósito de Glicogênio Tipo I , Genética , Proteínas de Transporte de Monossacarídeos , Genética , Mutação , Linhagem
4.
Artigo em Chinês | WPRIM | ID: wpr-234311

RESUMO

<p><b>OBJECTIVE</b>To investigate the molecular basis for a novel human leukocyte antigen (HLA) allele B*5827.</p><p><b>METHODS</b>DNA from the proband was analyzed by polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) typing. The amplified product was sequenced bidirectionally.</p><p><b>RESULTS</b>Abnormal HLA-B locus was observed and its nucleotide sequence was different from the known HLA-B allele sequences, with highest homology to HLA-B*5820 allele. It differs from HLA-B*5820 by 8 nucleotide substitutions in exon 3, i.e., nt 290 (G > C), nt 346 (T > A), nt 390 (A > C), nt 404 (G > C), nt 413 (C > G), nt 471 (A > G), nt 486 (A > G) and nt 487 (C > A), resulting in an amino acid change from ser > arg at nt 97, phe >tyr at nt 115, ser > arg at nt 130, thr > ala at nt 157 and thr > glu at nt 162. Nucleotide differences of nt 404 (G > C) and nt 413( C > G) did not change amino acid.</p><p><b>CONCLUSION</b>The sequences of the novel allele have been submitted to GenBank (access No.GU071234). A novel HLA class I allele B*5827 has been officially assigned by the WHO HLA Nomenclature Committee in Jan. 2010.</p>


Assuntos
Humanos , Alelos , Sequência de Bases , Clonagem Molecular , Genótipo , Antígenos HLA-B , Química , Genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
5.
Chinese Journal of Pediatrics ; (12): 608-612, 2009.
Artigo em Chinês | WPRIM | ID: wpr-360321

RESUMO

<p><b>OBJECTIVE</b>Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by glycogen debranching enzyme (GDE) gene (AGL gene) mutation resulting in hepatomegaly, hypoglycemia, short stature and hyperlipidemia. GSD IIIA, involves both liver and muscle, and accounts for up to 80% of GSD III. The definitive diagnosis depends on either mutation analysis or liver and muscle glycogen debranching enzyme activity tests. This study aimed to establish enzymologic diagnostic method for GSD IIIA firstly in China by detecting muscular GDE activity, glycogen content and structure and to determine the normal range of muscular GDE activity, glycogen content and structure in Chinese children.</p><p><b>METHOD</b>Muscle samples were collected from normal controls (male 15, female 20; 12-78 years old), molecularly confirmed GSD III A patients (male 8, female 4, 2-27 years old) and other myopathy patients (male 9, 2-19 years old). Glycogen in the muscle homogenate was degraded into glucose by amyloglucosidase and phosphorylase respectively. The glycogen content and structure were identified by glucose yield determination. The debranching enzyme activity was determined using limit dextrin as substrate. Independent samples Kruskal-Wallis H test, Nemenyi-Wilcoxson-Wilcox test, and Chi-square test were used for statistical analyses by SPSS 11.5.</p><p><b>RESULT</b>(1) GSD III A patients' glycogen content were higher, but G1P/G ratio and GDE activity were lower than those of the other two groups (P < 0.01). In all of the three parameters, there were no significant difference between normal controls and other myopathy patients. (2) The range of normal values: glycogen content 0.31%-0.43%, G1P/G ratio 22.37%- 26.43%, GDE activity 0.234-0.284 micromol/(g. min). (3) Enzymologic diagnostic method had a power similar to that of gene analysis in diagnosis of GSD-IIIA patients. The sensitivity and specificity of enzymologic diagnostic method and mutation detection were 91.7% and 100% respectively.</p><p><b>CONCLUSION</b>Enzymologic diagnostic method of GSD IIIA was firstly established in China. The range of normal values was determined. This method could be used in diagnosing suspected GSD IIIA patients in the clinic.</p>


Assuntos
Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Biópsia , Estudos de Casos e Controles , China , Glicogênio , Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Diagnóstico , Patologia , Músculos , Química , Patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA