Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 43(3): 844-856, July-Sept. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-656644

RESUMO

Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.


Assuntos
Biomassa , Celulose/análise , Enzimas/análise , Etanol/análise , Microbiologia Industrial , Hidrólise , Metodologia como Assunto
2.
Braz. arch. biol. technol ; 55(4): 497-503, July-Aug. 2012. tab
Artigo em Inglês | LILACS | ID: lil-645400

RESUMO

The aim of this work was to study the effect of some nutritional and environmental factors on the production of cellulases, in particular endoglucanase (CMCase) and exoglucanases (FPase) from Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from an Indian hot spring. The characterization study indicated that the optimum pH and temperature value was 6.5 to 7.0 and 50-55°C, respectively. Maximum cellulases production by both the isolates was detected after 60 h incubation period using wheat and rice straw. The combination of inorganic and organic nitrogen source was suitable for cellulases production. Overall, FPase production was much higher than CMCase production by both of the strains. Between the two thermophiles, the cellulolytic activity was more in B.licheniformis MVS1 than Bacillus sp. MVS3 in varying environmental and nutritional conditions.

3.
Indian J Biochem Biophys ; 2012 Jun; 49(3): 195-201
Artigo em Inglês | IMSEAR | ID: sea-140236

RESUMO

The impact of five Bacillus thuringiensis (Bt) cotton varieties and their respective isogenic non-Bt(NBt) isolines (ANKUR-2534, MECH-6304, RCH-317, ANKUR-651 and MECH-6301) was assessed on the key soil enzymes i.e., dehydrogenase, alkaline phosphatase and urease in their rhizosphere at four growth stages of the crop, namely vegetative, flowering, bolling and harvesting. These varieties were grown on farmer’s field in villages 22 miles and 24 miles of Ganganagar District of Rajasthan State in India. Results showed that dehydrogenase, alkaline phosphatase and urease activities were higher in rhizosphere of Bt isolines as compared to NBt isolines of all the varieties. Except phosphatase, differences in dehydrogenase and urease activities in rhizosphere of Bt and NBt isolines of all five varieties were significant (P<0.05). Maximum enhancement in the three enzymes activities was observed in MECH-6304 Bt isoline rhizosphere. Maximum and minimum activities of dehydrogenase and urease were observed in MECH-6304 and RCH-317 Bt isolines, respectively, whereas phosphatase activity was maximum and minimum in MECH-6304 and ANKUR-651 Bt isolines, respectively. Maximum dehydrogenase and urease activities were observed at boll formation and minimum at flowering and harvesting stage, respectively, while maximum phosphatase activity was observed at vegetative stage and minimum at harvesting stage. In conclusion, all the studied Bt isolines of cotton varieties showed no adverse effect on dehydrogenase, alkaline phosphatase and urease activities in the rhizosphere.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/genética , Gossypium/enzimologia , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Oxirredutases/química , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas , Rizosfera , Solo/análise , Urease/química , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA