Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): 137-142, 2017.
Artigo em Chinês | WPRIM | ID: wpr-737315

RESUMO

Objective By developing a novel endoscopic succession closing device to overcome the shortcomings of existing devices that cannot deploy several clips at one time,to perform structural analysis on different clamp structures and to validate their performances in tissue closure through finite element analysis.Metbods Comparative analyses of 3 clamp structures,namely,the aligning tooth structure (original,clamp A),the staggered tooth structure (clamp B),a combination structure with page break angle and staggered tooth (clamp C),were performed to analyze pressure and its distribution on tissues when clamping the stomach wall.Displacement of 7.5 mm was then applied on the clamps to simulate the effect from operating procedures of the device and tissue kick-back.Results The maximum stresses of the clamp A and B were located on the first pair of teeth which was closest to the rotating shaft,with the stress of 10.39 kPa and 10.11 kPa,respectively.The maximum stress (11.35 kPa) of the clamp C was located on the second pair of teeth.For clamp A and B,the longer the distance to shaft,the larger pressure on stomach tissues.While for clamp C,the pressure on device-tissue interface showed little change along the path.Under tensile displacement,clamp A and B slipped off from the tissue when displacements reached to 5.0 mm and 6.5 mm,respectively,while clamp C did not slip off.Conclusions Clamp with page break angle and staggered tooth can exert the uniform maximum pressure to tissues and provide a larger contact area away from the rotating shaft,thus improving the anti-slippage and performance of the novel endoscopic closing device.

2.
Journal of Medical Biomechanics ; (6): 115-121, 2017.
Artigo em Chinês | WPRIM | ID: wpr-737312

RESUMO

Objective To analyze the influence from strut numbers on biomechanical properties of Z-shaped stentgrafts,especially on their radial support performance and flexibility,so as to provide theoretical support for the design and clinical selection of Z-shaped stent-grafts.Methods Z-shaped stent-grafts with 5,8,10,12 struts were established by finite element method to simulate the process of compression and bending behavior.Radial displacements were applied on surface of the stent-graft and opposite rotations were applied around the z-axis,until a bending angle of 40° was reached.Then parameters such as stent stress,radial support force,strains in graft,cross-section deflection,bending torque were extracted to evaluate the performance of different stentgrafts.Results Compared with stent-grafts with more strut numbers,5-strut stent-graft showed a better radial support performance with the maximum radial force during compression,and it also generated the smallest 68 N · mm torque and 67.5% cross-section deflection.The tensile strain in graft of 5-strut stent-graft during the process of bending was relatively smaller.Conclusions The strut number of Z-shaped stent-grafts has a significant influence on biomechanical properties of the stent-grafts.Especially the Z-shaped stent-graft with relatively fewer strut numbers shows an advantage in evaluating radial support performance and flexibility such as the bending torque and the cross-section deflection,and is more suitable to be anchored and fit to the tortuous blood vessel,which will play a positive role in decreasing the complication such as endoleaks and thrombosis.The research findings can guide structure design of Z-shaped stent-grafts and optimal selection for surgery.

3.
Journal of Medical Biomechanics ; (6): 137-142, 2017.
Artigo em Chinês | WPRIM | ID: wpr-735847

RESUMO

Objective By developing a novel endoscopic succession closing device to overcome the shortcomings of existing devices that cannot deploy several clips at one time,to perform structural analysis on different clamp structures and to validate their performances in tissue closure through finite element analysis.Metbods Comparative analyses of 3 clamp structures,namely,the aligning tooth structure (original,clamp A),the staggered tooth structure (clamp B),a combination structure with page break angle and staggered tooth (clamp C),were performed to analyze pressure and its distribution on tissues when clamping the stomach wall.Displacement of 7.5 mm was then applied on the clamps to simulate the effect from operating procedures of the device and tissue kick-back.Results The maximum stresses of the clamp A and B were located on the first pair of teeth which was closest to the rotating shaft,with the stress of 10.39 kPa and 10.11 kPa,respectively.The maximum stress (11.35 kPa) of the clamp C was located on the second pair of teeth.For clamp A and B,the longer the distance to shaft,the larger pressure on stomach tissues.While for clamp C,the pressure on device-tissue interface showed little change along the path.Under tensile displacement,clamp A and B slipped off from the tissue when displacements reached to 5.0 mm and 6.5 mm,respectively,while clamp C did not slip off.Conclusions Clamp with page break angle and staggered tooth can exert the uniform maximum pressure to tissues and provide a larger contact area away from the rotating shaft,thus improving the anti-slippage and performance of the novel endoscopic closing device.

4.
Journal of Medical Biomechanics ; (6): 115-121, 2017.
Artigo em Chinês | WPRIM | ID: wpr-735844

RESUMO

Objective To analyze the influence from strut numbers on biomechanical properties of Z-shaped stentgrafts,especially on their radial support performance and flexibility,so as to provide theoretical support for the design and clinical selection of Z-shaped stent-grafts.Methods Z-shaped stent-grafts with 5,8,10,12 struts were established by finite element method to simulate the process of compression and bending behavior.Radial displacements were applied on surface of the stent-graft and opposite rotations were applied around the z-axis,until a bending angle of 40° was reached.Then parameters such as stent stress,radial support force,strains in graft,cross-section deflection,bending torque were extracted to evaluate the performance of different stentgrafts.Results Compared with stent-grafts with more strut numbers,5-strut stent-graft showed a better radial support performance with the maximum radial force during compression,and it also generated the smallest 68 N · mm torque and 67.5% cross-section deflection.The tensile strain in graft of 5-strut stent-graft during the process of bending was relatively smaller.Conclusions The strut number of Z-shaped stent-grafts has a significant influence on biomechanical properties of the stent-grafts.Especially the Z-shaped stent-graft with relatively fewer strut numbers shows an advantage in evaluating radial support performance and flexibility such as the bending torque and the cross-section deflection,and is more suitable to be anchored and fit to the tortuous blood vessel,which will play a positive role in decreasing the complication such as endoleaks and thrombosis.The research findings can guide structure design of Z-shaped stent-grafts and optimal selection for surgery.

5.
Journal of Medical Biomechanics ; (6): E342-E347, 2017.
Artigo em Chinês | WPRIM | ID: wpr-803886

RESUMO

Objective To analyze the relationship of closed staple height with tissue damage and compression pressure, so as to provide theoretical references and guidance for the surgeon to choose the appropriate staple cartridge and height, as well as improve the safety of operation. Methods The finite element model of stapled colorectal end-to-end anastomosis was established based on analysis of staple-tissue interaction. Large intestine tissues with different wall thicknesses (1.0-1.5 mm) were compressed by closed staples with 4 different height to compare changes in stress distributions and average radial pressure. Results When the tissues were compressed by closed staple with height of 1.0, 1.1, 1.2 and 1.5 mm, respectively, the average radial stress of compressed tissues with wall thicknesses of 1.2, 1.3, 1.4, and 1.5 mm were 56.0, 58.6, 59.7 and 57.3 kPa, respectively, which was close to the optimal compression pressure. Stress concentrations were found in contact area of the staple and tissues,with the maximum stress being 2 783, 1 750, 1940 and 2 030 kPa, respectively. Conclusions Tissue damage cannot be completely avoided in anastomotic surgery, and stress concentration is generally located near contact region of the staple and tissues. The optimal closed staple height ranges in 50%-60% of the uncompressed tissue height.

6.
Journal of Medical Biomechanics ; (6): E137-E142, 2017.
Artigo em Chinês | WPRIM | ID: wpr-803853

RESUMO

By developing a novel endoscopic succession closing device to overcome the shortcomings of existing devices that cannot deploy several clips at a time, to perform structural analysis on different clamp structures and to validate their performances in tissue closure through finite element analysis. Methods Comparative analyses of three clamp structures, namely, the aligning tooth structure (original, clamp A), the staggered tooth structure (clamp B), a combination structure with page break angle and staggered tooth (clamp C), were performed to analyze pressure and its distribution on tissues when clamping the stomach wall. Displacement of 7.5 mm was then applied on the clamps to simulate the effect of the operating procedures of the device and tissue kick-back. Results The maximum stresses of the clamp A and B were located on the first pair of teeth which was closest to the rotating shaft, with the stress being 10.39 kPa and 10.11 kPa, respectively. The maximum stress (11.35 kPa) of the clamp C was located on the second pair of teeth. For clamp A and B, the longer the distance to shaft, the larger pressure on stomach tissues. While for clamp C, the pressure on device-tissue interface showed little change along the path. Under tensile displacement, clamp A and B slipped off from the tissue when displacements reached to 5 mm and 6.5 mm, respectively, while clamp C did not. Conclusions Clamp with page break angle and staggered tooth can exert the uniform max pressure to tissues and provide a larger contact area away from the rotating shaft, thus improving anti-slippage and performance of the novel endoscopic closing device.

7.
Journal of Medical Biomechanics ; (6): E115-E121, 2017.
Artigo em Chinês | WPRIM | ID: wpr-803850

RESUMO

Objective To analyze the influence from strut numbers on biomechanical properties of Z-shaped stent-grafts, especially on their radial support performance and flexibility, so as to provide theoretical support for the design and clinical selection of Z-shaped stent-grafts. Methods Z-shaped stent-grafts with 5, 8, 10, 12 struts were established by finite element method to simulate the process of compression and bending behavior. Radial displacements were applied on surface of the stent-graft and opposite rotations were applied around the z-axis, until a bending angle of 40°was reached. Then parameters such as stent stress, radial support force, strains in graft, cross-section deflection, bending torque were extracted to evaluate the performance of different stent-grafts. Results Compared with stent-grafts with more strut numbers, 5-strut stent-graft showed a better radial support performance with the maximum radial force during compression, and it also generated the smallest 68 N•mm torque and 67.5% cross-section deflection. The tensile strain in graft of 5-strut stent-graft during the process of bending was relatively smaller. Conclusions The struts number of Z-shaped stent-grafts has a significant influence on biomechanical properties of the stent-grafts. Especially the Z-shaped stent-graft with relatively fewer strut numbers shows an advantage in evaluating radial support performance and flexibility such as the bending torque and the cross-section deflection, and is more suitable to be anchored and fit to the tortuous blood vessel, which will play a positive role in decreasing the complication such as endoleaks and thrombosis. The research findings can guide structure design of Z-shaped stent-grafts and the operation to make an optimal selection.

8.
Journal of Medical Biomechanics ; (6): E416-E420, 2015.
Artigo em Chinês | WPRIM | ID: wpr-804455

RESUMO

Objective To design a novel endoscopic successive hemostasis and closing device, and to validate whether the device can meet the needs of tissue closure by finite element analysis. Methods By using the novel device, the target tissue was clamped and the clip was then pushed to pierce the tissue. Under the compression between the clip and the inner side of the grasper, the thinner arms of the clip were forced to bend and close to stay in the tissue, and then the inverse displacement of 2 mm was applied on the clip. The elastic limit and tensile strength of the clip were set as 239.0 and 901.0 MPa, respectively. Results Deformation did not occur in the piercing process of the clip, with the maximum stress of 212.6 MPa. The deformed shape of the clip in the bending process matched its design expectation, with the maximum stress of 727.7 MPa. The maximum stress of the clip was 75.8 MPa under 2-mm inverse displacement. Material failure was not found in the bending process or with 2-mm inverse displacement, and the maximum stress in the whole process was 741.0 MPa. Conclusions The novel endoscopic successive hemostasis and closing device proposed in this study can deploy 4 clips at one time, together with an independent grasper for gathering tissues, which can shorten the reloading time and improve the accuracy of clip deployment. The effectiveness and safety of the device is also proved by using finite element method.

9.
Journal of Medical Biomechanics ; (6): E410-E415, 2015.
Artigo em Chinês | WPRIM | ID: wpr-804454

RESUMO

Objective To study biomechanical properties of two types of cylindrical nitinol stent-grafts under working condition of self-expanding, full deployment and bending, and analyze effects of structural change on biomechanical indexes of the grafts by numerical simulation methods. MethodsFirstly, the finite element models of two annular stent-grafts (i.e. stent-graft Ⅰ, stent graft Ⅱ, and a connecting rod was added to each stent unit of stent-graft Ⅱ for reinforcement) and target vessels were built. The stent-graft was transported to target vessel by delivery sheath, which was then removed to self-expand the stent-graft, and the contact between the vessel and the stent-graft was established. Secondly, the arterial pressure of 6.65-19.95 kPa (50-150 mmHg) was applied to inner surface of the stent-graft when the stent graft was fully deployed. Thirdly, the angular displacement was applied to both ends of the stent-graft to bend and deform the stent-graft. Finally, the maximum Von Mises stress (VMS) of the deformed vessel, the maximum principal strain (MPS), the maximum VMS and structural changes of the stent-graft were analyzed. ResultsFor both the stent-graft Ⅰ and Ⅱ, when they were self-expanding, the maximum VMS on the vessel was 0.349 MPa and 0.371 MPa, respectively; when they were fully deployed, the mean strain was 0.086% and 0.053%, the alternating strain was 0.049% and 0.027%, the maximum VMS on the membrane was 2.098 MPa and 2.430 MPa, respectively; when they were bent, the MPS was 0.069% and 0.101%, respectively, with more serious deformation on stent-graft Ⅰ. ConclusionsThe strain and stress of two stent-grafts under each working condition were less than their own material yielding limit. Stent-graft Ⅱ showed larger radial force in self-expanding, smaller strain under arterial pressure and better flexibility in bending deformation due to its connecting rod between each stent unit. These research results would provide an analysis method for structure design and material selection of the stent-graft, as well as a more intuitive and accurate technique guidance for intervention operation of the stent-graft in clinic.

10.
Journal of Medical Biomechanics ; (6): E318-E325, 2015.
Artigo em Chinês | WPRIM | ID: wpr-804423

RESUMO

Objective To analyze different biomechanical properties between Coflex and X-STOP device in the treatment of lumbar spinal stenosis (LSS), and provide references for design improvement of interspinous process spacer. MethodsFour finite element models, i.e., the L2-5 healthy segment model, the mild degenerated L4/5 segment model, the X-STOP-fixed L4/5 segment model, the Coflex-fixed L4/5 segment model, were constructed based on the normal lumbar CT images of a volunteer, and the models under flexion, extension, lateral bending and axial rotation were simulated to compare range of motion (ROM) changes and stress distributions on the spinous process and interspinous process spacer. ResultsX-STOP and Coflex decreased extension ROM by -48.12% and -75.35%, respectively, and released disc pressure by -58.03% and -80.75%, respectively. Coflex even restricted flexion ROM by -59.58% and reduced flexion disc pressure by -52.84%. No distinct changes appeared in lateral bending and axial rotation ROMs and disc pressure. The largest Von Mises stress appeared at the U-shape place during flexion in Coflex and at connection between left wing and screw during torsion in X-STOP, respectively. The largest contact pressure between Coflex and spinous process was 31.38 MPa during bending, and that between X-STOP and spinous process was 46.86 MPa during torsion. Conclusions Both X-STOP and Coflex are an effective treatment for LSS, and can effectively restrict the ROM of extension and reduce the disc pressure, without affecting the adjacent segments.

11.
Journal of Medical Biomechanics ; (6): E234-E240, 2014.
Artigo em Chinês | WPRIM | ID: wpr-804377

RESUMO

Objective To establish the contact deformation model of biological tissues contacting with endoscopic instruments, and to make mechanical analysis on contact stress and strain. Methods Based on Kelvin-Voigt model and Hertz contact theory, the contact deformation model of instruments (with both wedge-shaped teeth and cylinder-shaped teeth) contacting with biological tissues was established, and the variation of contact stress and strain changing with time in different endoscopic instruments were obtained through finite element analysis method and bio-impedance measurement. Results Endoscopic instruments with different structures of the teeth could cause different strain and stress on tissues during laparoscopic grasping. The stress of the instrument with wedge-shaped teeth on tissues was largest, while that with cylinder-shaped teeth was smallest, and that of instrument with hybrid structure of wedge-shaped and cylinder-shaped teeth was in between. Conclusions The hybrid structure of wedge-shaped and cylinder-shaped teeth can effectively reduce the peak pressure during laparoscopic grasping, thus prevent less tissue damage caused by wedge-shaped teeth, and enhance the grasping ability with cylinder-shaped teeth. This study provides an important reference for the safety use and better design of laparoscopic instruments in clinic.

12.
Journal of Medical Biomechanics ; (6): E524-E529, 2014.
Artigo em Chinês | WPRIM | ID: wpr-804330

RESUMO

Objective To investigate mechanical performances of two different drug eluting stents (DES) during compression process, so as to provide a scientific guideline for design of DES. Methods Using Solidworks, two kinds of stent models, namely the common DES without slots in outside surface (Stent I) and the targeted DES with slots in outside surface (Stent II) were established, respectively. The important mechanical properties of the two stents during compression process, such as rebound ratio of radial contraction, rebound ratio of axial contraction, the inhomogeneity of compression and the distribution of residual stress, were analyzed by ABAQUS. Results With the same outer radius, the difference values of rebound ratio of radial contraction, rebound ratio of axial contraction and inhomogeneity of compressing for the two stents were 0.07%-0.12%, 0.016%-0.033% and 0.013 %-0.048%, respectively; there was a bigger low-stress area on the support of Stent II. Conclusions Compared with the traditional DES, the targeted DES could maintain the same mechanical performances while reducing drug-loading capacity, which shows a good prospect in clinical application of the treatment for cardiovascular stenosis diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA