Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo | IMSEAR | ID: sea-230880

RESUMO

Rice crop in Assam constitutes a significant portion of the cultivated area, covering around sixty percent of the total area. The state, like many others, confronts the repercussions of climate change, notably evident in recurrent floods that impact agricultural lands. The shifting climate, marked by rising temperatures and increased rainy days, poses threats to crop production. Despite witnessing overall productivity growth, the state grapples with persistent challenges related to flood-induced losses. In response to this, climate-resilient rice varieties were developed to withstand submergence. This study delves into the assessment of the impact of these climate-resilient rice varieties on yield, income, and adoption among farmers. Concentrating on Golaghat and Sivasagar districts, where 106 farmers were interviewed, the research addresses the prevalent challenges in rice cultivation due to changing rainfall patterns. The introduced varieties underwent demonstration in plots, and their effects on yield, income, and adoption were comprehensively evaluated. The study additionally scrutinized the technology and extension gaps in the area, utilizing various indices such as the technology gap, extension gap, technology index, and benefit-cost ratio to measure the efficacy of the introduced varieties. The findings of the study highlight disparities between recommended agricultural practices and the actual methods employed by farmers. Despite these challenges, the introduction of climate-resilient varieties resulted in a noteworthy increase in yield. Economic analysis revealed enhanced profitability from B:C ratio of 0.43 to1.06 and positive changes in economic indicators. The adoption and horizontal spread of these varieties were substantial, with a significant rise from 106 to 378 in the number of adopters and expanded cultivation areas. Overall, the study emphasizes the success of climate-resilient rice varieties in augmenting yield, income, and adoption among farmers. The positive economic changes, coupled with heightened awareness, underscore the importance of promoting such varieties. The study advocates for sustained efforts in disseminating climate-resilient varieties, emphasizing their pivotal role in enhancing farmers' climate resilience. Addressing the identified discrepancies in agricultural practices emerges as a crucial step toward fostering sustainability and optimizing crop yield in the region.

2.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 350-356
Artigo | IMSEAR | ID: sea-221509

RESUMO

Rice varieties are usually characterized by agro-morphological descriptors used for seed certification and seed characterization by following distinctiveness, uniformity, and stability (DUS) test. But in fact, these primary distinguishing morphological descriptors among rice varieties are very limited and hence face problems to distinguish germplasm accessions. Germplasm certification in NBPGR requires a DNA fingerprinting profile to explain germplasm uniqueness compared to existing varieties. Varietal identification has gained a key role worldwide, particularly in plant variety protection. Sixty-two morphological descriptors studies have shown the Sub1 introgressed advanced lines E-6, C-210, C-196, 1189-1 and 1160-1 are distinct from the other varieties for more than 15morphological traits, based on these variations the lines were selected for DNA fingerprinting. About68 SSRs markers were used for DNA fingerprinting in seven genotypes, two of which were parents (Ranjit, Bahadur) and three Sub1 introgressed advanced lines (E6, C210, C196) in Ranjit background, and two Sub1 introgressed advanced lines (1189-1, 1160-1) in Bahadur background. DNA fingerprinting was done on these genotypes of rice using SSR markers. Among the 68 SSR markers, total 65 markers were amplified and three were found not amplified. Out of 65 markersfour of them viz. RM 152, RM 172, RM 251, and RM 346 showed better polymorphism with amplicon size ranges from 155-163 bp, 150-159 bp, 137-147 bp, and 166-175 bp, respectively, and remaining 61 showed monomorphic amplification. Therefore, SSR (Simple-sequence repeats) based DNA fingerprinting helped to differentiate Ranjit, Bahadur, E-6, C-210, C-196, 1189-1, and 1160-1. Hence, the research reveals that newly developed high-yielding Sub1 introgressed advanced lines in the background of traditional Assam rice varieties (Ranjit and Bahadur) are unique in their identity.

3.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 350-356
Artigo | IMSEAR | ID: sea-221507

RESUMO

Rice varieties are usually characterized by agro-morphological descriptors used for seed certification and seed characterization by following distinctiveness, uniformity, and stability (DUS) test. But in fact, these primary distinguishing morphological descriptors among rice varieties are very limited and hence face problems to distinguish germplasm accessions. Germplasm certification in NBPGR requires a DNA fingerprinting profile to explain germplasm uniqueness compared to existing varieties. Varietal identification has gained a key role worldwide, particularly in plant variety protection. Sixty-two morphological descriptors studies have shown the Sub1 introgressed advanced lines E-6, C-210, C-196, 1189-1 and 1160-1 are distinct from the other varieties for more than 15morphological traits, based on these variations the lines were selected for DNA fingerprinting. About68 SSRs markers were used for DNA fingerprinting in seven genotypes, two of which were parents (Ranjit, Bahadur) and three Sub1 introgressed advanced lines (E6, C210, C196) in Ranjit background, and two Sub1 introgressed advanced lines (1189-1, 1160-1) in Bahadur background. DNA fingerprinting was done on these genotypes of rice using SSR markers. Among the 68 SSR markers, total 65 markers were amplified and three were found not amplified. Out of 65 markersfour of them viz. RM 152, RM 172, RM 251, and RM 346 showed better polymorphism with amplicon size ranges from 155-163 bp, 150-159 bp, 137-147 bp, and 166-175 bp, respectively, and remaining 61 showed monomorphic amplification. Therefore, SSR (Simple-sequence repeats) based DNA fingerprinting helped to differentiate Ranjit, Bahadur, E-6, C-210, C-196, 1189-1, and 1160-1. Hence, the research reveals that newly developed high-yielding Sub1 introgressed advanced lines in the background of traditional Assam rice varieties (Ranjit and Bahadur) are unique in their identity.

4.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 350-356
Artigo | IMSEAR | ID: sea-221506

RESUMO

Rice varieties are usually characterized by agro-morphological descriptors used for seed certification and seed characterization by following distinctiveness, uniformity, and stability (DUS) test. But in fact, these primary distinguishing morphological descriptors among rice varieties are very limited and hence face problems to distinguish germplasm accessions. Germplasm certification in NBPGR requires a DNA fingerprinting profile to explain germplasm uniqueness compared to existing varieties. Varietal identification has gained a key role worldwide, particularly in plant variety protection. Sixty-two morphological descriptors studies have shown the Sub1 introgressed advanced lines E-6, C-210, C-196, 1189-1 and 1160-1 are distinct from the other varieties for more than 15morphological traits, based on these variations the lines were selected for DNA fingerprinting. About68 SSRs markers were used for DNA fingerprinting in seven genotypes, two of which were parents (Ranjit, Bahadur) and three Sub1 introgressed advanced lines (E6, C210, C196) in Ranjit background, and two Sub1 introgressed advanced lines (1189-1, 1160-1) in Bahadur background. DNA fingerprinting was done on these genotypes of rice using SSR markers. Among the 68 SSR markers, total 65 markers were amplified and three were found not amplified. Out of 65 markersfour of them viz. RM 152, RM 172, RM 251, and RM 346 showed better polymorphism with amplicon size ranges from 155-163 bp, 150-159 bp, 137-147 bp, and 166-175 bp, respectively, and remaining 61 showed monomorphic amplification. Therefore, SSR (Simple-sequence repeats) based DNA fingerprinting helped to differentiate Ranjit, Bahadur, E-6, C-210, C-196, 1189-1, and 1160-1. Hence, the research reveals that newly developed high-yielding Sub1 introgressed advanced lines in the background of traditional Assam rice varieties (Ranjit and Bahadur) are unique in their identity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA