RESUMO
Aim To study the effeet of baicalin on middle cerebral arterv in SD rats.Methods The j changes of middle cerebral artery diameter were observed using a pressure myograph system.The whole- cell and inside-out patch-clamp recording were used to detected the electrophysiological features of single vascular smooth muscle cells.Results Baicalin dilated the middle cerebral artery segment of SD rats in a con- centration-dependent manner.IbTX blocked baicalin - mediated relaxation.Baicalin enhanced the outward current of middle cerebral artery smooth muscle cells in a concentration-dependent manner.IbTX blocked ba- icalin-mediated outward current.Baicalin increased BK channel open probabilities.Conclusions Baicalin enhances the outward current mediated by BK channel and relaxes the middle cerebral arterv in SD rats.
RESUMO
The purposes of this study were to investigate the effect of emodin on expression of BKCa channel β1 subunit in basilar artery smooth muscle cells (BASMCs) and electrophysiological characteristics of vascular smooth muscle cells in spontaneously hypertensive rats (SHR). Tail artery pressure measurement instrument was used to measure the change of SHR systolic blood pressure before and after emodin intervention. Single vascular smooth muscle cell was electrically recorded by whole-cell patch-clamp technique. Immunohistochemistry and Western blotting were used to study the distribution and expression of the BKCa channel β1 subunit. The results showed that emodin decreased blood pressure of SHR from (223 ± 16) mmHg to (127 ± 12) mmHg (P < 0.01). There was no difference of blood pressure between emodin-treated SHR and Wistar rats. Emodin significantly increased outward currents of smooth muscle cells in SHR (P < 0.05), and this effect could be reversed by specific inhibitor of BKCa channel, IbTX. Emodin also up-regulated BKCa channel β1 subunit expression in BASMCs. These results suggest that emodin relaxes cerebral basilar artery by enhancing BKCa current via increasing β1 subunit expression in BASMCs.
Assuntos
Animais , Ratos , Artéria Basilar , Biologia Celular , Pressão Sanguínea , Emodina , Farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Metabolismo , Miócitos de Músculo Liso , Metabolismo , Técnicas de Patch-Clamp , Ratos Endogâmicos SHR , Ratos Wistar , Vasodilatação , Vasodilatadores , FarmacologiaRESUMO
Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P<0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic contractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 18β-GA, TEA or in Ca(2+)-free medium. Nifedipine, NFA, 18β-GA or Ca(2+)-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results suggest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca(2+)-activated Cl(-) channels (CaCCs) currents and K(Ca) currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca(2+) channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates K(Ca) channels and hyperpolarizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.
RESUMO
Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P<0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic contractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 18β-GA, TEA or in Ca(2+)-free medium. Nifedipine, NFA, 18β-GA or Ca(2+)-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results suggest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca(2+)-activated Cl(-) channels (CaCCs) currents and K(Ca) currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca(2+) channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates K(Ca) channels and hyperpolarizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.