Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Medical Journal ; (24): 69-74, 2018.
Artigo em Inglês | WPRIM | ID: wpr-324683

RESUMO

<p><b>BACKGROUND</b>Adipose-derived stromal vascular fraction (ADSVF) can be applied to repair tendon and ligament tears. ADSVF treatment has a better therapeutic potential than adipose stem cells alone in promoting the healing of connective tissue injury in rabbit models. Magnetic resonance imaging (MRI) and biomechanical testing were used in this study to evaluate the efficiency of SVF in the healing of tendon-bone interface of a rotator cuff injury after reattachment.</p><p><b>METHODS</b>A total of 36 rabbits were studied between March and June 2016, 18 rabbits received the SVF-fibrin glue (SVF-FG) treatment and the other 18 formed the control group. ADSVF was isolated from each rabbit. A bilateral amputation of the supraspinatus tendon and parallel reconstruction was also performed on all the 36 rabbits. Then, a mixture of SVF and FG was injected into the tendon-bone interface of the SVF-FG group, whereas the control group only received FG. The animals were randomly sacrificed at 4, 8, and 12 weeks after surgery (n = 6 per group), respectively. The shoulders were prepared for MRI scanning and analysis of biomechanical properties. Analyses of variance were performed using SPSS 13.0.</p><p><b>RESULTS</b>MRI scanning showed that the signal-to-noise quotient of the SVF-FG group was not significantly higher than that of the control group at either 4 (20.1 ± 3.6 vs. 18.2 ± 3.4, F = 1.570, P = 0.232) or 8 weeks (20.7 ± 3.3 vs. 18.0 ± 3.0, F = 2.162, P = 0.117) posttreatment, and only became significant after 12 weeks (27.5 ± 4.6 vs. 22.1 ± 1.9, F = 4.968, P = 0.009). Biomechanical properties such as the maximum load, maximum strength, and the stiffness for the SVF-FG group were significantly greater than that for the control group at 8 weeks' posttreatment (maximum load: 166.89 ± 11.62 N vs. 99.40 ± 5.70 N, P < 0.001; maximum strength: 8.22 ± 1.90 N/mm vs. 5.82 ±0.68 N/mm, P < 0.010; and the stiffness: 34.85± 3.00 Pa vs. 24.57± 5.72 Pa, P < 0.010).</p><p><b>CONCLUSION</b>Local application of ADSVF might lead to better tendon-bone healing in rabbit models.</p>

2.
Chinese Journal of Cardiology ; (12): 649-653, 2011.
Artigo em Chinês | WPRIM | ID: wpr-272186

RESUMO

<p><b>OBJECTIVE</b>To investigate the effect of stromal interaction molecule 1 (STIM1) silencing on EPCs cell cycle.</p><p><b>METHODS</b>Rat bone marrow derived endothelial progenitor cells (EPCs) were isolated and cultured in L-DMEM with 20% FBS. Ad-si/rSTIM1 and Ad-hSTIM1 were then transfected into EPCs and the expression of STIM1 mRNA was detected by RT-PCR. The cell cycle was determined using flow cytometry analysis and intracellular free Ca2+ was measured using LSCM. Co-immunoprecipitation was performed to examine the interaction between STIM1 and TRPC1. Protein levels of inositol 1, 4, 5-trisphosphate were analyzed with ELISA assay.</p><p><b>RESULTS</b>Forty-eight hours after transfection, the expression of STIM1 mRNA was significantly downregulated (0.37 +/- 0.02 vs. 1.00 +/- 0.02, P < 0.05) and intracellular free Ca2+ level was significantly reduced (34.07 +/- 4.10 vs. 86.51 +/- 14.12, P < 0.05) in Ad-si/rSTIM1 group compared with control group. The cell cycle was arrested at G1 phase [(90.91 +/- 1.10)% vs. (77.10 +/- 0.56)%, P < 0.05] and the store-operated channel entry was strikingly inhibited in EPCs after treatment with Ad-si/rSTIM1. However, cotransfection of Ad-hSTIM1 with Ad-si/rSTIM1 significantly reversed these responses. Interestingly, co-immunoprecipitation study showed that STIM1 co-precipitated with TRPC1, and IP3 levels measured by ELISA were similar among three groups (P > 0.05).</p><p><b>CONCLUSION</b>siRNA-mediated knockdown of STIM1 inhibited EPCs proliferation by reducing intracellular free Ca2+ through TRPC1-SOC signaling pathway.</p>


Assuntos
Animais , Ratos , Adenoviridae , Genética , Ciclo Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais , Biologia Celular , Inativação Gênica , Vetores Genéticos , Proteínas de Membrana , Genética , Proteínas de Neoplasias , Genética , RNA Interferente Pequeno , Células-Tronco , Biologia Celular , Molécula 1 de Interação Estromal , Transfecção , Canais de Potencial de Receptor Transitório , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA