Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
2.
Res. Biomed. Eng. (Online) ; 32(2): 153-160, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-829474

RESUMO

Abstract Introduction Envenomation by Bothrops snakes can produce local pain, edema, hemorrhage and myonecrosis. However, standard antivenom therapy is generally ineffective in neutralizing these effects so that alternative methods of treatment have been investigated. In experimental animals, low-level laser therapy (LLLT) attenuates the local effects of Bothrops venoms, but the benefits of LLLT on muscle function after envenomation are unclear. In this study, we examined the influence of LLLT on the contractile activity of mouse skeletal muscle injected with venom from Bothrops jararaca, the principal cause of snakebite in southeastern Brazil. Methods Twenty-seven male mice were used. Mice were injected with venom (40 μg in 50 μl) in the right anterior tibialis muscle, after which the muscle tendon was exposed, connected to an isometric transducer and subjected to a resting tension of 1 g. A bipolar electrode was attached to the tibial nerve for electrical stimulation. The mice were randomly allocated to five groups: A – Control (n = 3), B – Venom 3 h (n = 6), C – Venom 9 h (n = 6), D – Venom + Laser 3 h (n = 6), E – Venom + Laser 9 h (n = 6). Results The two groups that received LLLT post-venom showed improved muscle contraction and contracture in relation to muscle treated with venom alone. Conclusion These results indicate that LLLT can improve muscle function after damage induced by B. jararaca venom.

3.
Res. Biomed. Eng. (Online) ; 31(3): 241-248, July-Sept. 2015. tab, graf
Artigo em Inglês | LILACS | ID: biblio-829443

RESUMO

Introduction:Low-level laser therapy (LLLT) is effective in preventing fatigue and in stimulating the microcirculation and cellular activity. In this study, we examined the effect of LLLT on injured tibial muscle in vivo by assessing muscle function during fatigue.MethodsTwenty-four male mice were used. Each mouse received an injection of sterile 0.9% saline solution (50 µL) in the right tibialis anterior muscle, after which the tendon of the muscle was exposed, connected to an isometric transducer and subjected to a resting tension of 1 g. A bipolar electrode was attached to the tibial nerve for electrical stimulation. The mice were randomly allocated to one of two groups: G1 (control: 3 h – n=8 and 9 h – n=5) and G2 (treated with GaAlAs laser, λ660 nm, 35 mW, 0.6 J, 17 s: 3 h – n=6 and 9 h – n=5).ResultsIn G1 mice, the amplitude of the tetanic contracture in response to induced fatigue remained unchanged during six consecutive tetani. The amplitude of the tetanic contractions in response to electrical stimulation (4-8 mV) was also unchanged. These results indicated muscle intactness in response to the load imposed by tetanus. In G2 mice, there was an increase in the amplitude of contraction after 3 h and 9 h when compared to G1 at 83% tetanus.ConclusionThese results indicate that exposure of muscle to LLLT enhanced the contractile force and increased the resistance to muscle fatigue without causing morphological damage to cellular structures.

4.
Acta physiol. pharmacol. ther. latinoam ; 49(4): 268-78, 1999. graf, tab, ilus
Artigo em Inglês | LILACS | ID: lil-260730

RESUMO

The mechanisms underlying the muscle relaxant of 1-bebeerine (BB), a tertiary alkaloid isolated from the roots of Chondrodendron platyphyllum, were examined in mammalian and amphibian skeletal muscles. Injections of BB (0.05 - 1 g/kg,i.p.) in rats caused a dose-related flaccid paralysis and respiratory arrest at high doses. In isolated rat diaphragmand toad sartorius muscles, BB depressed the indirectly elicited muscles twitches (IC50:228 muM and 5.4 muM, respectively, at 22 degree) and blocked the nerve-elicited muscle action potential. The neuromuscular blockade was not reserved by neostigmine (10 muM). High concentrations of BB (170 and 340 muM) caused muscle contracture unrelated to the junctional blockade, and intensified by increasing the bath temperature. Analysis of the contraction properties showed that BB (40 and 80 muM)increaded the twitch/tetanus ratio (46 percent and 125 percent) and prolonged the relaxation time; the falling phase of the directly elicited action potential in toad sartorius muscle fibers was slower probably by a decreased potasium conductance. BB (0.1 - 340 muM) reduced the binding of [1251]alpha- -bungarotoxin to the junctional AACh receptor of the rat diaphragm (IC50:47.7 muM, at 37 degree. At low concentrations BB (1.5 - 15 muM) induced either opening or blockade of the Ach receptor-ionic channel. The results showed that BB blocked noncompetitively the neuromuscular transmission through a mechanism that affects the Ach recognition site and the ionic channel properties. The alkaloid also produced muscle contracture and changed the contractile properties through its extra-junctional action at the calcium handling by the sarcoplasmic reticulum or the contractile machinery.


Assuntos
Animais , Ratos , Alcaloides/farmacologia , Canais Iônicos/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Alcaloides/isolamento & purificação , Anuros , Sítios de Ligação , Agonistas Colinérgicos/metabolismo , Antagonistas Colinérgicos/metabolismo , Bloqueio Neuromuscular , Ratos Wistar , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA