Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
SQUMJ-Sultan Qaboos University Medical Journal. 2015; 15 (1): 58-66
em Inglês | IMEMR | ID: emr-160014

RESUMO

Screening for mutations in large genes is challenging in a molecular diagnostic environment. Sanger-based DNA sequencing methods are largely used; however, massively parallel sequencing [MPS] can accommodate increasing test demands and financial constraints. This study aimed to establish a simple workflow to amplify and screen all coding regions of the BRCA1 and BRCA2 [BRCA1/2] genes by Sanger-based sequencing as well as to assess a MPS approach encompassing multiplex polymerase chain reaction [PCR] and pyrosequencing. This study was conducted between July 2011 and April 2013. A total of 20 patients were included in the study who had been referred to Genetic Health Services New Zealand [Northern Hub] for BRCA1/2 mutation screening. Patients were randomly divided into a MPS evaluation and validation cohort [n = 10 patients each]. Primers were designed to amplify all coding exons of BRCA1/2 [28 and 42 primer pairs, respectively]. Primers overlying known variants were avoided to circumvent allelic drop-out. The MPS approach necessitated utilisation of a complementary fragment analysis assay to eliminate apparent false-positives at homopolymeric regions. Variants were filtered on the basis of their frequency and sequence depth. Sanger-based sequencing of PCR amplified coding regions was successfully achieved. Sensitivity and specificity of the combined MPS/homopolymer protocol was determined to be 100% and 99.5%, respectively. In comparison to traditional Sangerbased sequencing, the MPS workflow led to a reduction in both cost and analysis time for BRCA1/2 screening. MPS analysis achieved high analytical sensitivity and specificity, but required complementary fragment analysis combined with Sanger-based sequencing confirmation in some instances


Assuntos
Humanos , Feminino , Genes BRCA1 , Genes BRCA2 , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome Hereditária de Câncer de Mama e Ovário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA