Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2010 June; 48(6): 577-585
Artigo em Inglês | IMSEAR | ID: sea-145010

RESUMO

Cyclooxygenase (COX) isoenzyme is known to play an important role in the pathophysiology of Parkinson’s disease. The present study evaluated the neuroprotective effect of nimesulide, a preferential COX-2-inhibitor against 1-methyl-4-phenyl-1,2,3,6-tertahydropyridine (MPTP)-model of Parkinson’s disease. Intrastriatal administration of MPTP (32 μmol in 2 μl) produced a significant decrease in the locomotor activity. Biochemical investigation of striatal region revealed a significant enhancement in the oxidative stress as evidenced by increased lipid peroxidation levels, nitrite levels and myeloperoxidase activity along with depleted antioxidant pool (reduced glutathione and superoxide dismutase levels) and reduced redox (GSH/GSSG) ratio. MPTP administration also showed significant mitochondrial complex-I inhibition and reduction in the mitochondrial viability. Histological examination of the MPTP-treated brain sections revealed alteration in the histo-architecture as well as undifferentiated bodies of varying contour and lesions. Chronic administration of nimesulide (5 or 10 mg/kg, po) for 12 days, significantly reversed the behavioral, biochemical, mitochondrial and histological alterations induced by MPTP. In conclusion, the findings of the present study implicate the possible neuroprotective potential of nimesulide in MPTP-treated rats and thus highlight the therapeutic potential of COX-inhibitors in treatment of Parkinson’s disease.

2.
Indian J Exp Biol ; 2008 Jun; 46(6): 465-9
Artigo em Inglês | IMSEAR | ID: sea-62651

RESUMO

Withania somnifera (ashwagandha) is a widely used herb in the Ayurvedic system of medicine. The objective of the present study was to elucidate the effect of W. somnifera root extract (Ws) alone or in combination with exogenous gamma-amino butyric acid (GABA), a GABA receptor agonist or with diazepam, a GABA receptor modulator against pentylenetetrazol (PTZ, iv) seizure threshold in mice. Minimal dose of PTZ (iv, mg/kg) needed to induce different phases (myoclonic jerks, generalized clonus and tonic extension) of convulsions were recorded as an index of seizure threshold. Ws (100 or 200 mg/kg, po) increased the PTZ seizure threshold for the onset of tonic extension phase whereas a lower dose (50 mg/kg, po) did not show any effect on the seizure threshold. Co-administration of a sub-effective dose of Ws (50 mg/kg, po) with a sub-protective dose of either GABA (25 mg/kg, ip) or diazepam (0.5 mg/kg, ip) increased the seizure threshold. The results suggested that the anticonvulsant effect of W. somnifera against PTZ seizure threshold paradigm involved the GABAAergic modulation.


Assuntos
Animais , Anticonvulsivantes/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia , Raízes de Plantas , Receptores de GABA-A/efeitos dos fármacos , Convulsões/induzido quimicamente , Withania
3.
Indian J Exp Biol ; 2008 Mar; 46(3): 164-70
Artigo em Inglês | IMSEAR | ID: sea-58746

RESUMO

L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.


Assuntos
Análise de Variância , Animais , Antidepressivos/metabolismo , Arginina/metabolismo , GMP Cíclico/metabolismo , Maleato de Dizocilpina/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Óxido Nítrico/metabolismo , Esforço Físico/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/fisiologia , Natação
4.
Indian J Exp Biol ; 2007 Aug; 45(8): 720-5
Artigo em Inglês | IMSEAR | ID: sea-62738

RESUMO

Cefazolin injection (3000 mg/kg, i.v.) in mice showed several behavioral excitations such as wild running, jumping, rolling, and finally undergoing severe convulsions followed by death. It's lower doses (500-2000 mg/kg, i.v.) were unable to produce any convulsions or behavioral excitations in mice. However, cefazolin (500 or 1000 mg/kg, i.v.) when administered before different doses of pentylenetetrazol (PTZ; 40 or 60 mg/kg, i.p.) or picrotoxin (PTX; 4 or 8 mg/kg, i.p.), it produced severe tonic-clonic convulsions in mice. The convulsions or behavioral excitations produced by 3000 mg/kg, i.v. cefazolin was also reversed by different doses of diazepam (0.5-2 mg/kg, i.p.) further proving the GABAergic modulatory effect of cefazolin. The results conclude the pro-convulsant action of cefazolin on PTZ- or PTX-induced convulsions, and further confirm the clinical reports.


Assuntos
Animais , Antibacterianos , Comportamento Animal/efeitos dos fármacos , Cefazolina/toxicidade , Convulsivantes/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Pentilenotetrazol/toxicidade , Picrotoxina/toxicidade , Receptores de GABA-A/antagonistas & inibidores , Convulsões/induzido quimicamente
5.
Indian J Exp Biol ; 2007 Jul; 45(7): 642-8
Artigo em Inglês | IMSEAR | ID: sea-55990

RESUMO

Increased gastrointestinal motility in mice as one of the withdrawal symptoms of commonly abused drugs like diazepam or morphine and its possible mechanism of action was studied. Male Laka mice (20-25 g) were made addict to either diazepam (20 mg/kg, ip for 7 days) or morphine (10 mg/kg, sc for 9 days). Withdrawal symptoms were noted 24 hr after the last injection of diazepam or morphine. The animals were injected with Ro 15-1788 (flumazenil) (1 mg/kg, ip) or naloxone (2 mg/kg, ip) in the respective group to precipitate the withdrawal symptoms. Gastrointestinal motility was assessed by charcoal-meal test. Animals developed tolerance to acute sedative effect of diazepam, and similarly to the acute nociceptive action of morphine. On abrupt cessation of these drugs after chronic treatment the animals showed hyperlocomotion and hyperreactivity in diazepam withdrawal group and hyperalgesia on hot plate in morphine withdrawal groups, respectively. Increase in gastrointestinal motility was observed in all the drug withdrawal groups. Treatment with respective antagonists, Ro 15-1788 (flumazenil) and naloxone precipitated the withdrawal symptoms. The results suggest the involvement of both central and peripheral receptors of benzodiazepines and opioid (mu) receptors in the withdrawal symptoms of the benzodiazepines and morphine, respectively.


Assuntos
Analgésicos/farmacologia , Analgésicos Opioides , Animais , Sistema Nervoso Central/efeitos dos fármacos , Química Farmacêutica/métodos , Diazepam/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Flumazenil/farmacologia , Masculino , Camundongos , Morfina/farmacologia , Naloxona/farmacologia , Sistema Nervoso Periférico/efeitos dos fármacos , Estômago/efeitos dos fármacos , Síndrome de Abstinência a Substâncias
6.
Indian J Exp Biol ; 2006 Apr; 44(4): 286-91
Artigo em Inglês | IMSEAR | ID: sea-59690

RESUMO

Enzyme cyclooxygenase (COX) is reported to play a significant role in neurodegeneration and may play a significant role in the pathogenesis of epilepsy. Bicuculline (4 mg/kg; ip), picrotoxin (8 mg/kg; ip) and electroshock (60 mA for 0.2 sec) significantly induced convulsions in male Laka mice. COX-inhibitors viz. nimesulide (2.5 mg/kg; ip) and rofecoxib (2 mg/kg, ip) administered 45 minutes prior to an epileptic challenge prolonged mean onset time of convulsions, decreased duration of clonus and decreased % mortality rate against bicuculline- and picrotoxin-induced convulsions in mice. COX-2 inhibitors were ineffective towards maximal electroshock-induced convulsions. Nimesulide (1 mg/kg) and rofecoxib (1 mg/kg) also enhanced the effect of subprotective dose of muscimol against picrotoxin-induced convulsions. The result of the present study strongly suggests for a possible role of cyclooxygenase isoenzymes particularly, COX-2 in the pathophysiology of epilepsy and its GABAergic modulation.


Assuntos
Animais , Bicuculina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Masculino , Camundongos , Muscimol/farmacologia , Picrotoxina/farmacologia , Convulsões/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA