Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Rev. bras. epidemiol ; Rev. bras. epidemiol;24: e210050, 2021.
Artigo em Inglês | LILACS | ID: biblio-1351731

RESUMO

ABSTRACT: Objective: Emergency services are essential to the organization of the health care system. Nevertheless, they face different operational difficulties, including overcrowded services, largely explained by their inappropriate use and the repeated visits from users. Although a known situation, information on the theme is scarce in Brazil, particularly regarding longitudinal user monitoring. Thus, this project aims to evaluate the predictive performance of different machine learning algorithms to estimate the inappropriate and repeated use of emergency services and mortality. Methods: To that end, a study will be conducted in the municipality of Pelotas, Rio Grande do Sul, with around five thousand users of the municipal emergency department. Results: If the study is successful, we will provide an algorithm that could be used in clinical practice to assist health professionals in decision-making within hospitals. Different knowledge dissemination strategies will be used to increase the capacity of the study to produce innovations for the organization of the health system and services. Conclusion: A high performance predictive model may be able to help decisionmaking in the emergency services, improving quality of care.


RESUMO: Objetivo: Os serviços de emergência são fundamentais na organização da rede de atenção à saúde. Não obstante, apresentam diferentes dificuldades para seu funcionamento. Entre essas, destaca-se a superlotação dos serviços, a qual, em boa medida, é explicada pelo uso inadequado do serviço e reutilização frequente por parte de usuários. Apesar do conhecimento dessa situação, as informações sobre a temática são escassas no Brasil, ainda mais as relacionadas ao acompanhamento longitudinal dos usuários. Assim, este projeto objetiva avaliar a performance preditiva de diferentes algoritmos de machine learning para estimar o uso inapropriado e a reutilização dos serviços de emergência e a mortalidade. Métodos: Para isso, será realizado um estudo no município de Pelotas, Rio Grande do Sul, com um pouco mais de cinco mil usuários do pronto socorro municipal. Resultados: Caso o estudo seja bem-sucedido, será disponibilizado um algoritmo com potencial para ser usado na prática clínica para auxiliar profissionais de saúde na tomada de decisão no contexto hospitalar. Diferentes estratégias de difusão dos conhecimentos serão utilizadas para aumentar a capacidade do estudo de produzir inovações para a organização do sistema e serviços de saúde. Conclusão: Um modelo preditivo de alto desempenho pode auxiliar na tomada de decisão nos serviços de emergência, melhorando a qualidade do atendimento.


Assuntos
Humanos , Serviços Médicos de Emergência , Serviço Hospitalar de Emergência , Brasil , Avaliação de Resultados em Cuidados de Saúde , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA