Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Journal of Advanced Prosthodontics ; : 115-121, 2015.
Artigo em Inglês | WPRIM | ID: wpr-144380

RESUMO

PURPOSE: This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS: The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities (0.16 g/cm3, 0.24 g/cm3, and 0.32 g/cm3). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at 30degrees against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS: The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION: The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.


Assuntos
Densidade Óssea , Força Compressiva , Implantes Dentários , Poliuretanos , Torque
2.
The Journal of Advanced Prosthodontics ; : 115-121, 2015.
Artigo em Inglês | WPRIM | ID: wpr-144373

RESUMO

PURPOSE: This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS: The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities (0.16 g/cm3, 0.24 g/cm3, and 0.32 g/cm3). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at 30degrees against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS: The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION: The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.


Assuntos
Densidade Óssea , Força Compressiva , Implantes Dentários , Poliuretanos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA