Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Dental Materials ; (4): 193-202, 2020.
Artigo em Inglês | WPRIM | ID: wpr-901893

RESUMO

The purpose of the present study was to assess the temperature change and compressive property of bulk-fill composites (BFCs) by the light curing. Seven resin-based composites (RBCs), including five BFCs, were chosen to evaluate their maximum temperature rise and exothermic heat during and after light curing and compressive strength (CS) and modulus (CM) for 4-mm thick state. Light attenuation coefficients (ACs) showed reasonably high correlation with filler content (vol% and wt%).Except one resin product, AC values of BFCs were lower than those of RBCs tested. All the tested specimens showed temperature rise (9.8-23.6℃) and exothermic heat (4.2-18.3℃) for 4-mm thick case. CS and CM values of the tested specimens ranged approximately 69 to 116 MPa and 1.3 to 2.8 GPa, respectively. The difference of temperature changes and compressive properties (CS and CM) between BFCs and RBCs was not consistent and had no statistically consistent significance.

2.
Korean Journal of Dental Materials ; (4): 193-202, 2020.
Artigo em Inglês | WPRIM | ID: wpr-894189

RESUMO

The purpose of the present study was to assess the temperature change and compressive property of bulk-fill composites (BFCs) by the light curing. Seven resin-based composites (RBCs), including five BFCs, were chosen to evaluate their maximum temperature rise and exothermic heat during and after light curing and compressive strength (CS) and modulus (CM) for 4-mm thick state. Light attenuation coefficients (ACs) showed reasonably high correlation with filler content (vol% and wt%).Except one resin product, AC values of BFCs were lower than those of RBCs tested. All the tested specimens showed temperature rise (9.8-23.6℃) and exothermic heat (4.2-18.3℃) for 4-mm thick case. CS and CM values of the tested specimens ranged approximately 69 to 116 MPa and 1.3 to 2.8 GPa, respectively. The difference of temperature changes and compressive properties (CS and CM) between BFCs and RBCs was not consistent and had no statistically consistent significance.

3.
Korean Journal of Dental Materials ; (4): 179-186, 2018.
Artigo em Inglês | WPRIM | ID: wpr-759664

RESUMO

The aim of this study was to determine if a 457 nm blue laser could effectively polymerize dental composite resins. After light curing 6 dental composite resins using a laser or a LED light-curing unit at 530 mW/cm2 and 900 mW/cm2, respectively, degree of conversion and microhardness were evaluated. Degree of conversion of specimens by the laser and LED was similar (on top surface 54.4–67.7% and 55.2–67.1%, respectively; on bottom surface 35.1–53.8% and 45.4–53.1%, respectively). Microhardness was also similar (on top surface 28.5–83.6 Hv and 19.1–82.4 Hv, respectively; on bottom surface 22.5–65.4 Hv and 16.8–74.4 Hv, respectively), although, in some cases, laser-treated specimens showed slightly lower microhardness than the LED-treated on bottom surface. The present study shows that the 457 nm laser can polymerize dental composite resins to the same level as LED achieved.


Assuntos
Resinas Compostas , Polimerização , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA