Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Psychosomatic Medicine ; : 101-110, 2019.
Artigo em Coreano | WPRIM | ID: wpr-918147

RESUMO

OBJECTIVES@#It is not clear which clinical variables are most closely associated with delirium in the Intensive Care Unit (ICU). By comparing clinical data of ICU delirium and non-delirium patients, we sought to identify variables that most effectively differentiate delirium from non-delirium.@*METHODS@#Medical records of 6,386 ICU patients were reviewed. Random Subset Feature Selection and Principal Component Analysis were utilized to select a set of clinical variables with the highest discriminatory capacity. Statistical analyses were employed to determine the separation capacity of two models-one using just the selected few clinical variables and the other using all clinical variables associated with delirium.@*RESULTS@#There was a significant difference between delirium and non-delirium individuals across 32 clinical variables. Richmond Agitation Sedation Scale (RASS), urinary catheterization, vascular catheterization, Hamilton Anxiety Rating Scale (HAM-A), Blood urea nitrogen, and Acute Physiology and Chronic Health Examination II most effectively differentiated delirium from non-delirium. Multivariable logistic regression analysis showed that, with the exception of vascular catheterization, these clinical variables were independent risk factors associated with delirium. Separation capacity of the logistic regression model using just 6 clinical variables was measured with Receiver Operating Characteristic curve, with Area Under the Curve (AUC) of 0.818. Same analyses were performed using all 32 clinical variables;the AUC was 0.881, denoting a very high separation capacity.@*CONCLUSIONS@#The six aforementioned variables most effectively separate delirium from non-delirium. This highlights the importance of close monitoring of patients who received invasive medical procedures and were rated with very low RASS and HAM-A scores.

2.
Journal of the Korean Society of Biological Psychiatry ; : 26-31, 2017.
Artigo em Coreano | WPRIM | ID: wpr-725376

RESUMO

OBJECTIVES: normal circadian rhythm of autonomic nervous system function stands for the daily change of sympathetic and parasympathetic modulation, which can be measured by heart rate variability (HRV). Generally, patients in the intensive care unit (ICU) are prone to sleep-wake cycle dysregulation, therefore, it may have an influence on the circadian rhythm of autonomic nervous system. This study was designed to interpret possible dysregulation of autonomic nervous system in ICU patients by using HRV. METHODS: HRV was assessed every 3 hours in 21 ICU patients during a 7-minute period. The statistical differences of HRV features between the morning (AM 6 : 00–PM 12 : 00), and the afternoon (PM 12 : 00–PM 18 : 00) periods were evaluated in time domain and frequency domain. RESULTS: Patients showed significantly increased normalized power of low frequencey (nLF), absolute power of low frequencey (LF)/absolute power of high frequencey (HF) in the afternoon period as compared to the morning period. However, normalized power of high frequency (nHF) was significantly decreased in the afternoon period. There was no statistically significant difference between the morning period and the afternoon period in the time domain analysis. CONCLUSIONS: The increased sympathetic tone in the afternoon period supports possible dysregulation in the circadian rhythm of autonomic nervous system in ICU patients. Future studies can help to interpret the association between autonomic dysregulation and negative outcomes of ICU patients.


Assuntos
Humanos , Sistema Nervoso Autônomo , Ritmo Circadiano , Cuidados Críticos , Frequência Cardíaca , Coração , Unidades de Terapia Intensiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA