Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
J. venom. anim. toxins incl. trop. dis ; 25: e20190022, 2019. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1012634

RESUMO

The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. Methods: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). Results: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 μg of PnTx4(5-5) injection in rat paw. Conclusion: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.(AU)


Assuntos
Venenos de Aranha , Dinoprostona , Fármacos Atuantes sobre Aminoácidos Excitatórios , Analgésicos/síntese química
2.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954801

RESUMO

Background: Some peptides purified from the venom of the spider Phoneutria nigriventer have been identified as potential sources of drugs for pain treatment. In this study, we characterized the antinociceptive effect of the peptide PnPP-19 on the central nervous system and investigated the possible involvement of opioid and cannabinoid systems in its action mechanism. Methods: Nociceptive threshold to thermal stimulation was measured according to the tail-flick test in Swiss mice. All drugs were administered by the intracerebroventricular route.Results: PnPP-19 induced central antinociception in mice in the doses of 0.5 and 1 µg. The non-selective opioid receptor antagonist naloxone (2.5 and 5 µg), µ-opioid receptor antagonist clocinnamox (2 and 4 µg), δ-opioid receptor antagonist naltrindole (6 and 12 µg) and CB1 receptor antagonist AM251 (2 and 4 µg) partially inhibited the antinociceptive effect of PnPP-19 (1 µg). Additionally, the anandamide amidase inhibitor MAFP (0.2 µg), the anandamide uptake inhibitor VDM11 (4 µg) and the aminopeptidase inhibitor bestatin (20 µg) significantly enhanced the antinociception induced by a low dose of PnPP-19 (0.5 µg). In contrast, the κ-opioid receptor antagonist nor-binaltorphimine (10 µg and 20 µg) and the CB2 receptor antagonist AM630 (2 and 4 µg) do not appear to be involved in this effect. Conclusions: PnPP-19-induced central antinociception involves the activation of CB1 cannabinoid, µ- and δ-opioid receptors. Mobilization of endogenous opioids and cannabinoids might be required for the activation of those receptors, since inhibitors of endogenous substances potentiate the effect of PnPP-19. Our results contribute to elucidating the action of the peptide PnPP-19 in the antinociceptive pathway.(AU)


Assuntos
Animais , Peptídeos , Aranhas , Canabinoides , Sistema Nervoso Central , Analgésicos Opioides , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
3.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484657

RESUMO

Some peptides purified from the venom of the spider Phoneutria nigriventer have been identified as potential sources of drugs for pain treatment. In this study, we characterized the antinociceptive effect of the peptide PnPP-19 on the central nervous system and investigated the possible involvement of opioid and cannabinoid systems in its action mechanism. Methods Nociceptive threshold to thermal stimulation was measured according to the tail-flick test in Swiss mice. All drugs were administered by the intracerebroventricular route. Results PnPP-19 induced central antinociception in mice in the doses of 0.5 and 1 g. The non-selective opioid receptor antagonist naloxone (2.5 and 5 g), -opioid receptor antagonist clocinnamox (2 and 4 g), -opioid receptor antagonist naltrindole (6 and 12 g) and CB1 receptor antagonist AM251 (2 and 4 g) partially inhibited the antinociceptive effect of PnPP-19 (1 g). Additionally, the anandamide amidase inhibitor MAFP (0.2 g), the anandamide uptake inhibitor VDM11 (4 g) and the aminopeptidase inhibitor bestatin (20 g) significantly enhanced the antinociception induced by a low dose of PnPP-19 (0.5 g). In contrast, the -opioid receptor antagonist nor-binaltorphimine (10 g and 20 g) and the CB2 receptor antagonist AM630 (2 and 4 g) do not appear to be involved in this effect. Conclusions PnPP-19-induced central antinociception involves the activation of CB1 cannabinoid, - and -opioid receptors. Mobilization of endogenous opioids and cannabinoids might be required for the activation of those receptors, since inhibitors of endogenous substances potentiate the effect of PnPP-19. Our results contribute to elucidating the action of the peptide PnPP-19 in the antinociceptive pathway.


Assuntos
Animais , Analgésicos/administração & dosagem , Analgésicos/química , Analgésicos/síntese química , Aranhas/química , Peptídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA