Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Endocrinology and Metabolism ; : 336-348, 2014.
Artigo em Inglês | WPRIM | ID: wpr-44895

RESUMO

BACKGROUND: It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1). METHODS: In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice. RESULTS: The GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt)/phospho-glycogen synthase kinase3beta (p-GSK3beta), phospho-extracellular signal-related kinase (p-ERK), and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK), Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist. CONCLUSION: The results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation.


Assuntos
Animais , Camundongos , Envelhecimento , Caspase 3 , Dieta , Expressão Gênica , Hormônio do Crescimento , Hipocampo , Fator de Crescimento Insulin-Like I , Memória , Estresse Oxidativo , Fosfotransferases , Receptor IGF Tipo 1
2.
Laboratory Animal Research ; : 259-263, 2011.
Artigo em Inglês | WPRIM | ID: wpr-95397

RESUMO

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 microM), esculetin attenuated the 45Ca2+ uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H2O2 and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 microM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.


Assuntos
Ácido Araquidônico , Encéfalo , Glutationa , Glutationa Redutase , Ácido Caínico , Lipoxigenase , N-Metilaspartato , Doenças Neurodegenerativas , Neurônios , Oxirredutases , Peroxidase , Espécies Reativas de Oxigênio , Umbeliferonas
3.
Experimental Neurobiology ; : 130-136, 2011.
Artigo em Inglês | WPRIM | ID: wpr-7984

RESUMO

We previously demonstrated that repeated exposure to extremely low frequency magnetic fields (ELF-MF) increases locomotor activity via stimulation of dopaminergic D1 receptor (J. Pharmacol. Sci., 2007;105:367-371). Since it has been demonstrated that activator protein-1 (AP-1) transcription factors, especially 35-kDa fos-related antigen (FRA), play a key role in the neuronal and behavioral adaptation in response to various stimuli, we examined whether repeated ELF-MF exposure induces FRA-immunoreactivity (FRA-IR) in the striatum and nucleus accumbens (striatal complex) of the mice. Repeated exposure to ELF-MF (0.3 or 2.4 mT, 1 h/day, for consecutive fourteen days) significantly induced hyperlocomotor activity and FRA-IR in the striatal complex in a field intensity-dependent manner. ELF-MF-induced FRA-IR lasted for at least 1 year, while locomotor activity returned near control level 3 months after the final exposure to ELF-MF. Pretreatment with SCH23390, a dopaminergic D1 receptor antagonist, but not with sulpiride, a dopaminergic D2 receptor antagonist, significantly attenuated hyperlocomotor activity and FRA-IR induced by ELF-MF. Our results suggest that repeated exposure to ELF-MF leads to prolonged locomotor stimulation and long-term expression of FRA in the striatal complex of the mice via stimulation of dopaminergic D1 receptor.


Assuntos
Animais , Camundongos , Benzazepinas , Campos Magnéticos , Magnetismo , Imãs , Atividade Motora , Neurônios , Núcleo Accumbens , Sulpirida , Fator de Transcrição AP-1 , Fatores de Transcrição
4.
Journal of the Korean Pediatric Society ; : 1454-1458, 1992.
Artigo em Coreano | WPRIM | ID: wpr-196878

RESUMO

No abstract available.


Assuntos
Feminino , Humanos , Síndrome do Abdome em Ameixa Seca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA