Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Natural Product Sciences ; : 80-88, 2022.
Artigo em Inglês | WPRIM | ID: wpr-938823

RESUMO

Colorectal cancer is one of the most common cancers globally, ranking second for the number of cancer-related deaths. Metastasis has been reported as the main cause of death in patients with colorectal cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcription factor that functions as a tumor suppressor by inhibiting cellular proliferation, migration, and invasion. In our previous efforts to generate natural product-motivated PPAR-γ ligands, the compounds 1 and 2 were obtained. These compounds activated PPAR-γ and inhibited the migration and invasion of HCT116 colorectal cancer cells, and they were also found to inhibit the epithelial-to-mesenchymal transition, which is a key process in cancer metastasis. Compounds 1 and 2 upregulated expression of the epithelial marker (E-cadherin), and downregulated expression of the mesenchymal marker (N-cadherin) and transcriptional factor (Snail). Therefore, the PPAR-γ agonists 1 and 2 could serve as a valuable model for the study on anti-metastatic leads for the treatment of colorectal cancer.

2.
Biomolecules & Therapeutics ; : 519-526, 2021.
Artigo em Inglês | WPRIM | ID: wpr-897330

RESUMO

In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

3.
Biomolecules & Therapeutics ; : 519-526, 2021.
Artigo em Inglês | WPRIM | ID: wpr-889626

RESUMO

In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

4.
Natural Product Sciences ; : 225-228, 2018.
Artigo em Inglês | WPRIM | ID: wpr-741638

RESUMO

By activity-guided fractionation, gliotoxin was isolated as an antibacterial metabolite of the fungus Penicillium decumbens which was derived from the jellyfish Nemopilema nomurai. Gliotoxin was further evaluated for antibacterial activity against several piscine and human MDR (multidrug resistance) pathogens. Gliotoxin showed significant antibacterial activity against Gram-positive piscine pathogens such as Streptococcus iniae FP5228, Streptococcus iniae FP3187, Streptococcus parauberis FP3287, Streptococcus parauberis SPOF3K, S. parauberis KSP28, and Lactococcus garvieae FP5245. Gliotoxin showed strong activity especially against S. parauberis SPOF3K and S. iniae FP5228, which are resistant to oxytetracycline. It is noteworthy that gliotoxin effectively suppressed streptococci which are the major pathogens for piscine infection and mortality in aquaculture industry. Gliotoxin also showed strong antibacterial activity against multidrug-resistant human pathogens (MDR) including Enterococcus faecium 5270 and MRSA (methicillin-resistant Staphylococcus aureus) 3089.


Assuntos
Humanos , Aquicultura , Enterococcus faecium , Fungos , Gliotoxina , Lactococcus , Staphylococcus aureus Resistente à Meticilina , Mortalidade , Oxitetraciclina , Penicillium , Staphylococcus , Streptococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA