Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of the Korean Radiological Society ; : 344-359, 2022.
Artigo em Inglês | WPRIM | ID: wpr-926421

RESUMO

Purpose@#To develop a denoising convolutional neural network-based image processing technique and investigate its efficacy in diagnosing breast cancer using low-dose mammography imaging. @*Materials and Methods@#A total of 6 breast radiologists were included in this prospective study. All radiologists independently evaluated low-dose images for lesion detection and rated them for diagnostic quality using a qualitative scale. After application of the denoising network, the same radiologists evaluated lesion detectability and image quality. For clinical application, a consensus on lesion type and localization on preoperative mammographic examinations of breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed full-dose, and full-dose images were presented and assessed in a random order. @*Results@#Lesions on 40% reconstructed full-dose images were better perceived when compared with low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnostic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences. @*Conclusion@#Effective denoising and image reconstruction processing techniques can enable breast cancer diagnosis with substantial radiation dose reduction.

2.
Korean Journal of Radiology ; : 356-364, 2020.
Artigo em Inglês | WPRIM | ID: wpr-810978

RESUMO

OBJECTIVE: To compare the image quality of low-dose (LD) computed tomography (CT) obtained using a deep learning-based denoising algorithm (DLA) with LD CT images reconstructed with a filtered back projection (FBP) and advanced modeled iterative reconstruction (ADMIRE).MATERIALS AND METHODS: One hundred routine-dose (RD) abdominal CT studies reconstructed using FBP were used to train the DLA. Simulated CT images were made at dose levels of 13%, 25%, and 50% of the RD (DLA-1, -2, and -3) and reconstructed using FBP. We trained DLAs using the simulated CT images as input data and the RD CT images as ground truth. To test the DLA, the American College of Radiology CT phantom was used together with 18 patients who underwent abdominal LD CT. LD CT images of the phantom and patients were processed using FBP, ADMIRE, and DLAs (LD-FBP, LD-ADMIRE, and LD-DLA images, respectively). To compare the image quality, we measured the noise power spectrum and modulation transfer function (MTF) of phantom images. For patient data, we measured the mean image noise and performed qualitative image analysis. We evaluated the presence of additional artifacts in the LD-DLA images.RESULTS: LD-DLAs achieved lower noise levels than LD-FBP and LD-ADMIRE for both phantom and patient data (all p < 0.001). LD-DLAs trained with a lower radiation dose showed less image noise. However, the MTFs of the LD-DLAs were lower than those of LD-ADMIRE and LD-FBP (all p < 0.001) and decreased with decreasing training image dose. In the qualitative image analysis, the overall image quality of LD-DLAs was best for DLA-3 (50% simulated radiation dose) and not significantly different from LD-ADMIRE. There were no additional artifacts in LD-DLA images.CONCLUSION: DLAs achieved less noise than FBP and ADMIRE in LD CT images, but did not maintain spatial resolution. The DLA trained with 50% simulated radiation dose showed the best overall image quality.


Assuntos
Humanos , Artefatos , Ruído , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA