Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 155-163, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1039636

RESUMO

ObjectiveTo determine the pharmacodynamic substance basis of Epimedii Folium(EF) and Epimedii Wushanensis Folium(EWF) in promoting osteogenic differentiation, and to establish a method to analyze the material basis of Chinese materia medica based on the correlation between chemical fingerprint and cellular metabolomics. MethodThe chemical fingerprints of 15 batches of EF with 4 species and 3 batches of EWF were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS), and partial least squares-discriminant analysis(PLS-DA) was used to analyze the peak areas of chemical fingerprints of samples. The effects of different samples on proliferative activity of MC3T3-E1 osteoblast precursors, as well as the activity of alkaline phosphatase(ALP) in osteoblasts were detected by cell counting kit-8(CCK-8) and enzyme-linked immunosorbent assay(ELISA). At the same time, UPLC-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to analyze the effects of different samples on the metabolomics of MC3T3-E1 cells, then metabolic peak table of osteogenic differentiation cells was constructed, and pharmacodynamic index mean Y0 was introduced into the peak table. PLS was used to calculate mean Y0 of each group, and the mean Y0 was added to the peak table of chemical fingerprint to construct the correlation between chemical fingerprint and cell metabolome, the pharmacodynamic components of EF and EWF that promote bone differentiation were screened according to variable importance in the projection(VIP) value>1. The pharmacodynamic effects of EF and EWF were evaluated according to the mean Y0 of each group. ResultThe chemical fingerprints of EF with different origins and EWF were completely separated. Compared with the blank group, the activity of MC3T3-E1 cells in EF and EWF groups was significantly increased, the activity of ALP in the Epimedium brevicornu(Gansu province), E. koreanum and E. pubescens groups was significantly increased(P<0.05). The results of cell metabolomics showed that the blank group and the model group had an obvious trend of separation. EF with different origins and EWF had different distance from the model group, indicating that EF with different origins and EWF had different effect on promoting osteogenic differentiation. Chemical fingerprint-cell metabolomics integration analysis screened 9 components closely related to the efficacy of EF and EWF, including diphylloside B, epimedin C, icariin, baohuoside Ⅰ, yinyanghuo B, β-anhydroicaritin, magnoflorine, cryptochlorogenic acid and quercetin. E. koreanum had the strongest effect on promoting osteogenic differentiation. ConclusionThis study determined that the material basis of EF and EWF promoting osteogenic differentiation were mostly flavonoids, alkaloids and organic acids, which provided ideas and methods for the screening of pharmacodynamic components and the prediction of therapeutic effect of Chinese materia medica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA