Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Diabetes & Metabolism Journal ; : 327-336, 2017.
Artigo em Inglês | WPRIM | ID: wpr-123921

RESUMO

Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis.


Assuntos
Humanos , Tecido Adiposo Marrom , Tecido Adiposo Branco , Metabolismo Basal , Diabetes Mellitus , Ingestão de Energia , Metabolismo Energético , Mãos , Metabolismo , Atividade Motora , Músculo Esquelético , Obesidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Termogênese , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA