Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta cir. bras ; 37(1): e370108, 2022. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1374064

RESUMO

Purpose: Traumatic brain injury (TBI) remains a major public health problem and cause of death. Ulinastatin (UTI), a serine protease inhibitor, has been reported to have an anti-inflammatory effect and play a role in immunoregulation and organ protection by reducing reactive oxygen species (ROS) production, oxidative stress and inflammation. However, the neuroprotective of UTI in TBI has not been confirmed. Therefore, this study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in TBI-induced EBI in a C57BL/6 mouse model. Methods: The neurological score and brain water content were evaluated. Enzyme-linked immunosorbent assay was used to detect neuroinflammatory cytokine levels, ROS and malondialdehyde detection to evaluate oxidative stress levels, and TUNEL staining and western blotting to examine neuronal damages and their related mechanisms. Results: Treatment with UTI markedly increased the neurological score; alleviated brain oedema; decreased the inflammatory cytokine tumour necrosis factor a, interleukin-1ß (IL-1ß), IL-6 and nuclear factor kappa B (NF-kB) levels; inhibited oxidative stress; decreased caspase-3 and Bax protein expressions; and increased the Bcl-2 levels, indicating that UTI-mediated inhibition of neuroinflammation, oxidative stress and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of UTI is partly dependent on the TLR4/NF-kB/p65 signalling pathway. Conclusions: Therefore, this study reveals that UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, oxidative stress and apoptosis.


Assuntos
Animais , Camundongos , Lesões Encefálicas/terapia , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/uso terapêutico , Apoptose , Estresse Oxidativo
2.
Acta cir. bras ; 36(10): e361002, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1349867

RESUMO

ABSTRACT Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. Methods: In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). Results: The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. Conclusions: CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.


Assuntos
Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Necroptose , Transdução de Sinais , Hemorragia Cerebral/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuroproteção , Glicogênio Sintase Quinase 3 beta/farmacologia , Aminoácidos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA