Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Asian Journal of Andrology ; (6): 215-223, 2019.
Artigo em Chinês | WPRIM | ID: wpr-842553

RESUMO

Androgen receptor (AR), a hormonal transcription factor, plays important roles during prostate cancer progression and is a key target for therapeutic interventions. While androgen-deprivation therapies are initially successful in regressing prostate tumors, the disease ultimately comes back as castration-resistant prostate cancer (CRPC) or at the late stage as neuroendocrine prostate cancer (NEPC). CRPC remains largely dependent on hyperactive AR signaling in the milieu of low androgen, while NEPC is negative of AR expression but positive of many AR-repressed genes. Recent technological advances in genome-wide analysis of transcription factor binding sites have revealed an unprecedented set of AR target genes. In addition to its well-known function in activating gene expression, AR is increasingly known to also act as a transcriptional repressor. Here, we review the molecular mechanisms by which AR represses gene expression. We also summarize AR-repressed genes that are aberrantly upregulated in CRPC and NEPC and represent promising targets for therapeutic intervention.

2.
Asian Journal of Andrology ; (6): 215-223, 2019.
Artigo em Inglês | WPRIM | ID: wpr-1009718

RESUMO

Androgen receptor (AR), a hormonal transcription factor, plays important roles during prostate cancer progression and is a key target for therapeutic interventions. While androgen-deprivation therapies are initially successful in regressing prostate tumors, the disease ultimately comes back as castration-resistant prostate cancer (CRPC) or at the late stage as neuroendocrine prostate cancer (NEPC). CRPC remains largely dependent on hyperactive AR signaling in the milieu of low androgen, while NEPC is negative of AR expression but positive of many AR-repressed genes. Recent technological advances in genome-wide analysis of transcription factor binding sites have revealed an unprecedented set of AR target genes. In addition to its well-known function in activating gene expression, AR is increasingly known to also act as a transcriptional repressor. Here, we review the molecular mechanisms by which AR represses gene expression. We also summarize AR-repressed genes that are aberrantly upregulated in CRPC and NEPC and represent promising targets for therapeutic intervention.


Assuntos
Humanos , Masculino , Repressão Epigenética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA