Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Tipo de estudo
Intervalo de ano
1.
Braz. j. med. biol. res ; 36(8): 993-1002, Aug. 2003. ilus, graf
Artigo em Inglês | LILACS | ID: lil-340795

RESUMO

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions


Assuntos
Animais , Axônios , Sulfatos de Condroitina , Heparitina Sulfato , Mesencéfalo , Neurônios , Astrócitos , Divisão Celular , Células Cultivadas , Mesencéfalo , Neuroglia
2.
Braz. j. med. biol. res ; 34(2): 251-258, Feb. 2001.
Artigo em Inglês | LILACS | ID: lil-281604

RESUMO

Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth


Assuntos
Animais , Camundongos , Astrócitos/metabolismo , Glicosaminoglicanos/biossíntese , Mesencéfalo/citologia , Sulfatos/metabolismo , Ésteres do Ácido Sulfúrico , Astrócitos/metabolismo , Técnicas de Cultura de Células , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/metabolismo , Eletroforese em Gel de Ágar , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/biossíntese , Heparitina Sulfato/metabolismo
3.
Braz. j. med. biol. res ; 32(5): 611-8, May 1999.
Artigo em Inglês | LILACS | ID: lil-233479

RESUMO

As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons


Assuntos
Matriz Extracelular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , Proteínas tau/fisiologia , Proteínas do Citoesqueleto , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Fatores de Crescimento Neural , Neuroglia
4.
Braz. j. med. biol. res ; 29(9): 1179-87, Sept. 1996.
Artigo em Inglês | LILACS | ID: lil-186125

RESUMO

The central nervous system (CNS) midline plays an important role in growth and guidance of axons. At the midline, a multiplicity of cell types establish boundaries that control the navigation of crossed and uncrossed axonal fibers. The extracellular matrix (ECM) molecules of the resident neuroepithelial or committed neuronal of glial cells could be involved in the control of axon growth and axon guidance. This review reports the recent advances in the study of the structure and functional role of the ECM at the midline locus of the CNS. In vivo and in vitro approaches are considered to provide new clues in the understanding of processes involved in the cellular decisions of the CNS midline.


Assuntos
Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Técnicas In Vitro , Laminina/metabolismo , Mesencéfalo/citologia , Neuritos/ultraestrutura , Neuroglia/metabolismo , Tenascina/metabolismo , Sistema Nervoso Central/citologia , Mesencéfalo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA