Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 58: e201188, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420506

RESUMO

Abstract Mycophenolic acid (MPA) inhibits IMPDH, involved in the guanosine nucleotides synthesis, and prevents DNA replication in immune cells. The repression of cell and humoral immunity by MPA induces allograft tolerance preventing acute rejection in solid organ transplantation. MPA is an effective and safe drug, but genetic and non-genetic factors have been implicated in the interindividual variability of drug response. Several studies have shown the impact of variants of pharmacokinetics or pharmacodynamics-related genes on MPA response in kidney transplantation. This review explored further the influence of genes involved in the immune response on clinical outcomes of kidney recipients on short- or long-term MPA treatment. Variants in genes related to T cell activation (CD28, CTL4, ICOS, PDPC1), pro-inflammatory cytokines (IL2, IL6, IL12A, IL12B, TNF, IFNG), immunomodulatory cytokines (IL4, IL10, TGFB1), and innate immune response (CD14, TLR2, TLR4) were shown to be associated with increased risk of acute rejection, graft function or survival, chronic graft nephropathy, viral infections or MPA-induced myelotoxicity. Some of the significant pharmacogenetic associations were confirmed by meta-analyses of kidney transplantation. These findings are suggestive that variants in immune response-related genes contribute to the variability of MPA response, and have potential application as biomarkers of acute rejection in kidney transplantation.


Assuntos
Farmacogenética/instrumentação , Transplante de Rim/classificação , Ácido Micofenólico/análise , Preparações Farmacêuticas/administração & dosagem , Imunidade/imunologia
2.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01005, 2018. tab
Artigo em Inglês | LILACS | ID: biblio-974432

RESUMO

Dyslipidemia, diabetes, obesity and hypertension are common metabolic diseases. In the last decades, unhealthy lifestyle and aging have leads to an increased incidence of these diseases, increasing morbidity and mortality by cardiovascular causes. The treatment of metabolic diseases includes life-style interventions as healthy diet and physical exercise, as well as pharmacological interventions. Several drugs are available for the management of metabolic diseases including among others lipid-lowering antidiabetics and antihypertensive drugs. Variability in response to these drugs is influenced by both genetic and non-genetic factors. Polymorphisms in genes related to drug pharmacokinetics and pharmacodynamics have been shown to influence drug efficacy and safety. This review is focused on pharmacogenetic studies related to the management of metabolic diseases in samples of the Brazilian population. Associations of variants in drug metabolizing enzymes and transporters, drug target and metabolism-related genes with the efficacy and safety of lipid-lowering, antidiabetic and antihypertensive drugs are described. Most pharmacogenetic studies in Brazil have focused in pharmacological response to a small group of drugs, as statins and some antihypertensives, while there are almost no studies on antidiabetic and antiobesity drugs. Some studies reported significant associations of gene polymorphisms with drug response confirming previous data from other populations, whereas other works did not replicate, which may relay on the genetic admixture of our population. In conclusion, further studies are necessary considering larger sample sizes, new unexplored drugs and more genetic variants to obtain stronger conclusions to explore clinical applications of pharmacogenetic studies in our population.


Assuntos
População/genética , Variantes Farmacogenômicos/fisiologia , Doenças Metabólicas/patologia , Doenças Metabólicas/prevenção & controle , Polimorfismo Genético , Brasil , Testes Farmacogenômicos/métodos
3.
Arq. bras. endocrinol. metab ; 57(9): 677-684, Dec. 2013. tab
Artigo em Inglês | LILACS | ID: lil-696912

RESUMO

OBJECTIVE: The aim of the study was to investigate whether adiposity and metabolic markers, such as leptin, glucose, and lipids, are influenced by leptin (LEP) and leptin receptor (LEPR) gene polymorphisms in a sample of our population. SUBJECTS AND METHODS: A group of 326 individuals of Caucasian-European descent, aged 30 to 80 years, 87 men and 239 women, 148 obese and 178 non-obese, was randomly selected at two clinical hospitals in the city of Sao Paulo, Brazil. All individuals declared their ethnic group as white during the initial interview. Anthropometric measurements, body mass index (BMI), and fat mass were evaluated. Blood samples were drawn for DNA extraction and measurements of leptin, soluble leptin receptor, glucose, and lipids. LEP -2548G>A and LEPR Lys109Arg (c.326A>G), Gln233Arg (c.668A>G) and Lys656Asn (c.1968G>C) polymorphisms were detected by PCR-RFLP. RESULTS: Increased leptin and serum lipids, and LEPR Arg223Arg (GG genotype) were associated with higher risk for obesity (p < 0.05), while reduced risk was found in LEPR Arg109Arg (GG genotype) carriers (OR: 0.38, 95%CI: 0.19-0.77, p = 0.007). Multiple linear regression analysis showed a relationship between LEPR 223Arg, increased waist circumference, and leptinemia (p < 0.05), while LEPR 109Arg was associated with high total cholesterol and triglycerides (p < 0.05). LEPR haplotype 3 (AGG: 109Lys/233Arg/656Lys) carriers have increased risk for obesity (OR: 2.56, 95% CI: 1.19-5.49, p = 0.017). Moreover, this haplotype was associated with increased BMI, waist circumference, and leptinemia (p < 0.05). CONCLUSIONS: LEPR polymorphisms are associated with obesity, hyperleptinemia, and atherogenic lipid profile, suggesting their potential role for leptin resistance and cardiovascular risk. Moreover, LEPR haplotype 3 confers susceptibility to adiposity and hyperleptinemia in our population.


OBJETIVO: O estudo teve por objetivo investigar a influência de polimorfismos nos genes da leptina (LEP) e do receptor de leptina (LEPR) na adiposidade e em marcadores metabólicos, como leptina, glicose e lipí­deos, em uma amostra de nossa população. SUJEITOS E MÉTODOS: Um grupo de 326 indivíduos com idade de 30 a 80 anos, 87 homens e 239 mulheres, 148 obesos e 178 não obesos, e de etnia branca foi selecionado aleatoriamente em dois hospitais clínicos da cidade de São Paulo, Brasil. Medidas antropométricas, índice de massa corporal (IMC) e gordura corporal foram avaliados. Amostras de sangue foram obtidas para extração de DNA e determinações de leptina, receptor de leptina solúvel, glicose e lipídeos. Os polimorfismos LEP -2548G>A e LEPR Lys109Arg (c.326A>G), Gln233Arg (c.668A>G) e Lys656Asn (c.1968G>C) foram detectados por PCR-RFLP. RESULTADOS: Leptina e lipídeos séricos aumentados e LEPR Arg223Arg (genótipo GG) foram associados com maior risco de obesidade (p < 0,05), enquanto foi encontrado risco reduzido de obesidade, em portadores de LEPR Arg109Arg (genótipo GG) (OR: 0,38, 95%CI: 0,19-0,77, p = 0,007). A análise de regressão linear múltipla mostrou relação entre o alelo LEPR 223Arg e circunferência abdominal e leptinemia aumentadas (p < 0,05), enquanto o alelo LEPR 109Arg foi associado com aumento de colesterol total e triglicerídeos (p < 0,05). Os portadores do haplotipo 3 do LEPR (AGG: 109Lys/233Arg/656Lys) tiveram maior risco aumentado para obesidade (OR: 2.56, 95% CI: 1.19-5.49, p = 0,017). Além disso, esse haplótipo foi associado com IMC, circunferência abdominal e leptinemia aumentados (p < 0,05). CONCLUSÕES: Polimorfismos de LEPR são associados com obesidade, hiperleptinemia e perfil lipídico aterogênico sugerindo seu papel potencial para a resistência à leptina e risco cardiovascular.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adiposidade/genética , Leptina/genética , Obesidade/genética , Polimorfismo de Fragmento de Restrição/genética , Receptores para Leptina/genética , Análise de Variância , Brasil , Biomarcadores/sangue , Glicemia/metabolismo , Distribuição de Qui-Quadrado , Frequência do Gene , Glucose/metabolismo , Leptina/sangue , Obesidade/sangue , Reação em Cadeia da Polimerase , Fatores de Risco , Receptores para Leptina/sangue , Circunferência da Cintura/genética
4.
São Paulo; s.n; 2011. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-681121

RESUMO

A eficácia das estatinas em reduzir o risco de eventos coronarianos não é completamente explicada por seus efeitos em diminuir colesterol de lipoproteína de baixa densidade (LDL-C). Um dos seus efeitos adicionais pode ser decorrente da modificação na concentração de lipoproteína de alta densidade (HDL), reconhecida como ateroprotetora, principalmente por seu papel no transporte reverso do colesterol (TRC). Os transportadores de membrana do tipo ATP-binding cassette, ABCA1 e ABCG1, e o scavenger receptor BI (SRBI) são proteínas importantes envolvidas no TRC e seus genes são regulados por vários fatores de transcrição, entre eles os liver-x-receptors (LXRs). Com a finalidade de avaliarmos os efeitos dos hipolipemiantes sobre expressão dos transportadores ABC e do receptor SRBI, a expressão de RNAm do ABCA1, ABCG1, SCARB1, NR1H3 (LXRα) e NR1H2 (LRXβ) foi avaliada por PCR em tempo real em células das linhagens HepG2 (origem hepática) e Caco-2 (origem intestinal) tratadas com atorvastatina ou sinvastatina (10 µM) e/ou ezetimiba (até 5 µM) por até 24 horas. Além disso, a expressão desses genes também foi avaliada em células mononucleares do sangue periférico (CMSP) de 50 pacientes normolipidêmicos (NL) e 71 hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4semanas, n=48) ou sinvastatina e/ou ezetimiba (10mg/dia/4 ou 8 semanas, n=23). A possível associação entre os polimorfismos ABCA1 C-14T e R219K e a expressão de RNAm em CMSP também foi avaliada por PCR-RFLP. O SCARB1 foi o gene mais expresso nas células HepG2 e Caco-2, seguido por NR1H2, NR1H3, ABCG1 e ABCA1 em HepG2 ou por ABCA1 e ABCG1 em Caco-2. O tratamento com estatinas (1 ou 10 µM) ou ezetimiba (5 µM), por 12 ou 24 horas, aumentou a expressão de RNAm do ABCG1, mas não de ABCA1 e SCARB1, em células HepG2. Ainda nesta linhagem, o aumento na transcrição dos genes NR1H2 e NR1H3 foi observado somente com a maior concentração de atorvastatina (10 µM) e, ao contrário, o tratamento com ezetimiba...


The efficacy of statins in reducing the risk of coronary events is not completely explained by their effects in decreasing cholesterol low-density lipoprotein (LDL-C). One of their additional effects may result from the change in concentration of high-density lipoprotein (HDL), recognized as atheroprotective, mainly for the role in reverse cholesterol transport (RCT). The membrane transporters, as ATP-binding cassette, ABCA1 and ABCG1, and scavenger receptor BI (SRBI) are important proteins involved in the RCT and their genes are regulated by various transcription factors, including the liver-X-receptors (LXRs) . In order to evaluate the effects of lipid lowering on expression of ABC transporters and SRBI receptor, the mRNA expression of ABCA1, ABCG1, SCARB1, NR1H3 (LXRα) and NR1H2 (LRXβ) was assessed by real time PCR in HepG2 (hepatic origin) and Caco-2 (intestinal origin) cells treated with atorvastatin or simvastatin (10 µM) and/or ezetimibe (up to 5 µM) for 24 hours. Furthermore, the expression of these genes was evaluated in peripheral blood mononuclear cells (PBMC) of 50 normolipidemic (NL) and 71 hypercholesterolemic (HC) patients treated with atorvastatin (10mg/d/4 weeks, n = 48) or simvastatin and/or ezetimibe (10mg/d/4 or 8 weeks, n = 23). The possible association between ABCA1 C-14T and R219K polymorphisms and mRNA expression in PBMC was also evaluated by PCR-RFLP. SCARB1 was the most expressed in HepG2 and Caco-2 cells, followed by NR1H2, NR1H3, ABCG1 and ABCA1 in HepG2 or by ABCG1 and ABCA1 in Caco-2. The treatment with statins (1 or 10 µM) or ezetimibe (5 µM) for 12 or 24 hours, increased mRNA expression of ABCG1 but not ABCA1 and SCARB1 in HepG2 cells. Moreover, in HepG2 cells, atorvastatin also upregulated NR1H2 and NR1H3 only at 10.0 µM, meanwhile ezetimibe downregulated NR1H2 but did not change NR1H3 expression. In Caco-2 cells, atorvastatin or simvastatin treatment for 12 or 24 hours reduced the amount of ABCA1 transcript and did not ...


Assuntos
Expressão Gênica , Inibidores de Hidroximetilglutaril-CoA Redutases/análise , Lipoproteínas LDL , Lipoproteínas LDL/isolamento & purificação , Lipoproteínas LDL/química , Transportadores de Cassetes de Ligação de ATP/análise
5.
São Paulo; s.n; s.n; 2011. 141 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-837233

RESUMO

A eficácia das estatinas em reduzir o risco de eventos coronarianos não é completamente explicada por seus efeitos em diminuir colesterol de lipoproteína de baixa densidade (LDL-C). Um dos seus efeitos adicionais pode ser decorrente da modificação na concentração de lipoproteína de alta densidade (HDL), reconhecida como ateroprotetora, principalmente por seu papel no transporte reverso do colesterol (TRC). Os transportadores de membrana do tipo ATP-binding cassette, ABCA1 e ABCG1, e o scavenger receptor BI (SRBI) são proteínas importantes envolvidas no TRC e seus genes são regulados por vários fatores de transcrição, entre eles os liver-x-receptors (LXRs). Com a finalidade de avaliarmos os efeitos dos hipolipemiantes sobre expressão dos transportadores ABC e do receptor SRBI, a expressão de RNAm do ABCA1, ABCG1, SCARB1, NR1H3 (LXRα) e NR1H2 (LRXß) foi avaliada por PCR em tempo real em células das linhagens HepG2 (origem hepática) e Caco-2 (origem intestinal) tratadas com atorvastatina ou sinvastatina (10 µM) e/ou ezetimiba (até 5 µM) por até 24 horas. Além disso, a expressão desses genes também foi avaliada em células mononucleares do sangue periférico (CMSP) de 50 pacientes normolipidêmicos (NL) e 71 hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4semanas, n=48) ou sinvastatina e/ou ezetimiba (10mg/dia/4 ou 8 semanas, n=23). A possível associação entre os polimorfismos ABCA1 C-14T e R219K e a expressão de RNAm em CMSP também foi avaliada por PCR-RFLP. O SCARB1 foi o gene mais expresso nas células HepG2 e Caco-2, seguido por NR1H2, NR1H3, ABCG1 e ABCA1 em HepG2 ou por ABCA1 e ABCG1 em Caco-2. O tratamento com estatinas (1 ou 10 µM) ou ezetimiba (5 µM), por 12 ou 24 horas, aumentou a expressão de RNAm do ABCG1, mas não de ABCA1 e SCARB1, em células HepG2. Ainda nesta linhagem, o aumento na transcrição dos genes NR1H2 e NR1H3 foi observado somente com a maior concentração de atorvastatina (10 µM) e, ao contrário, o tratamento com ezetimiba causou redução na transcrição de NR1H2, sem alteração de NR1H3. Em células Caco-2, o tratamento com atorvastatina ou sinvastatina por 12 ou 24 horas reduziu a quantidade do transcrito ABCA1 e não alterou a expressão do SCARB1 e do ABCG1, embora, para este último, tenha havido uma tendência à diminuição da expressão após tratamento com sinvastatina (p=0,07). Após tratamento com ezetimiba isolada (até 5 µM) nenhuma alteração de expressão de RNAm foi observada em células Caco-2; no entanto, após 24 horas de tratamento com sinvastatina e ezetimiba, foi reduzida a taxa de transcrição de ABCA1 e ABCG1, mas não de SCARB1. Ao contrário das linhagens celulares, em CMSP os genes NR1H2 e ABCG1 foram os mais expressos, seguidos pelos genes SCARB1 e ABCA1 e, finalmente, pelo NR1H3. Indivíduos HC tiveram maior expressão basal de NR1H2 e NR1H3, mas não de outros genes, quando comparados aos NL (p<0,05). Além disso, nos indivíduos HC, a expressão basal de ABCA1 foi maior em portadores do alelo -14T do polimorfismo ABCA1 -14C>T quando comparados aos portadores do genótipo -14CC (p=0,034). O tratamento com estatinas, com ezetimiba ou com a terapia combinada diminuiu a transcrição de ABCA1 e ABCG1. Para o SCARB1, NR1H2 e NR1H3, nenhuma alteração de expressão de RNAm em CMSP foi detectada após os tratamentos in vivo. Após todas as fases de tratamento, ABCA1 e ABCG1 e também NR1H2 e NR1H3 foram significativamente correlacionados entre si, mas nenhuma correlação com perfil lipídico sérico foi relevante. Coletivamente, esses resultados dão indícios de que os hipolipemiantes analisados (estatinas e ezetimiba) têm um importante papel na regulação da expressão de genes envolvidos no transporte reverso do colesterol e sugerem a existência de regulação tecido-específica para os dois transportadores ABC. Além disso, o efeito das estatinas ou da ezetimiba sobre a expressão do ABCA1, do ABCG1 ou do SCARB1 não sofreu influencia de alterações diretas da transcrição dos LXRs


The efficacy of statins in reducing the risk of coronary events is not completely explained by their effects in decreasing cholesterol low-density lipoprotein (LDL-C). One of their additional effects may result from the change in concentration of high-density lipoprotein (HDL), recognized as atheroprotective, mainly for the role in reverse cholesterol transport (RCT). The membrane transporters, as ATP-binding cassette, ABCA1 and ABCG1, and scavenger receptor BI (SRBI) are important proteins involved in the RCT and their genes are regulated by various transcription factors, including the liver-X-receptors (LXRs) . In order to evaluate the effects of lipid lowering on expression of ABC transporters and SRBI receptor, the mRNA expression of ABCA1, ABCG1, SCARB1, NR1H3 (LXRα) and NR1H2 (LRXß) was assessed by real time PCR in HepG2 (hepatic origin) and Caco-2 (intestinal origin) cells treated with atorvastatin or simvastatin (10 µM) and/or ezetimibe (up to 5 µM) for 24 hours. Furthermore, the expression of these genes was evaluated in peripheral blood mononuclear cells (PBMC) of 50 normolipidemic (NL) and 71 hypercholesterolemic (HC) patients treated with atorvastatin (10mg/d/4 weeks, n = 48) or simvastatin and/or ezetimibe (10mg/d/4 or 8 weeks, n = 23). The possible association between ABCA1 C-14T and R219K polymorphisms and mRNA expression in PBMC was also evaluated by PCR-RFLP. SCARB1 was the most expressed in HepG2 and Caco-2 cells, followed by NR1H2, NR1H3, ABCG1 and ABCA1 in HepG2 or by ABCG1 and ABCA1 in Caco-2. The treatment with statins (1 or 10 µM) or ezetimibe (5 µM) for 12 or 24 hours, increased mRNA expression of ABCG1 but not ABCA1 and SCARB1 in HepG2 cells. Moreover, in HepG2 cells, atorvastatin also upregulated NR1H2 and NR1H3 only at 10.0 µM, meanwhile ezetimibe downregulated NR1H2 but did not change NR1H3 expression. In Caco-2 cells, atorvastatin or simvastatin treatment for 12 or 24 hours reduced the amount of ABCA1 transcript and did not alter the ABCG1 and SCARB1 expressions, despite the tendency to decrease ABCG1 mRNA expression after simvastatin treatment (p = 0.07). After treatment with ezetimibe alone (up to 5 µM) no change in mRNA expression was observed in Caco-2 cells; however, after 24 hours- simvastatin and ezetimibe treatments decreased the transcription of ABCA1 and ABCG1, but not of SCARB1. Unlike cell lines, in PBMC, NR1H2 and ABCG1 were the most expressed, followed by SCARB1 and ABCA1 and finally by the NR1H3. HC patients showed higher NR1H2 and NR1H3 basal expressions, but not of other genes, compared to NL (p <0.05). Moreover, in HC individuals, the ABCA1 basal expression was higher in individuals carrying -14T allele of -14C> T polymorphism when compared with -14CC carriers (p = 0.034). Treatment with statins, ezetimibe, or combined therapy downregulated ABCA1 and ABCG1 expression. For SCARB1, NR1H2 and NR1H3, no change in mRNA expression in PBMC was detected after treatments. After all phases of treatment, ABCA1 and ABCG1 as well as NR1H2 and NR1H3 were significantly correlated, but no correlation with serum lipid profile was relevant. Collectively, these results provide evidences that the lipid lowering (statins and ezetimibe) have an important role in mRNA expression regulation of genes involved in reverse cholesterol transport and suggest the existence of tissue-specific regulation for the ABC transporters. Furthermore, the effect of statins or ezetimibe on ABCA1, ABCG1 or SCARB1 expression was not directly influenced by changes of LXR transcription


Assuntos
Humanos , Expressão Gênica , Colesterol , Hipolipemiantes , Farmacogenética , Transportadores de Cassetes de Ligação de ATP , Inibidores de Hidroximetilglutaril-CoA Redutases , Ezetimiba , Hipercolesterolemia , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA