Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental & Molecular Medicine ; : e407-2017.
Artigo em Inglês | WPRIM | ID: wpr-146654

RESUMO

We investigated the effect of lysophosphatidic acid (LPA) in experimental acetaminophen (APAP)-induced acute liver injury. LPA administration significantly reduced APAP-challenged acute liver injury, showing attenuated liver damage, liver cell death and aspartate aminotransferase and alanine aminotransferase levels. APAP overdose-induced mortality was also significantly decreased by LPA administration. Regarding the mechanism involved in LPA-induced protection against acute liver injury, LPA administration significantly increased the glutathione level, which was markedly decreased in APAP challenge-induced acute liver injury. LPA administration also strongly blocked the APAP challenge-elicited phosphorylation of JNK, ERK and GSK3β, which are involved in the pathogenesis of acute liver injury. Furthermore, LPA administration decreased the production of TNF-α and IL-1β in an experimental drug-induced liver injury animal model. Mouse primary hepatocytes express LPA₁(,)₃–₆, and injection of the LPA receptor antagonist KI16425 (an LPA₁(,)₃-selective inhibitor) or H2L 5765834 (an LPA₁(,)₃(,)₅-selective inhibitor) did not reverse the LPA-induced protective effects against acute liver injury. The therapeutic administration of LPA also blocked APAP-induced liver damage, leading to an increased survival rate. Collectively, these results indicate that the well-known bioactive lipid LPA can block the pathogenesis of APAP-induced acute liver injury by increasing the glutathione level but decreasing inflammatory cytokines in an LPA₁(,)₃(,)₅-independent manner. Our results suggest that LPA might be an important therapeutic agent for drug-induced liver injury.

2.
Experimental & Molecular Medicine ; : 130-137, 2012.
Artigo em Inglês | WPRIM | ID: wpr-93417

RESUMO

Neutrophils play a key role in innate immunity, and the identification of new stimuli that stimulate neutrophil activity is a very important issue. In this study, we identified three novel peptides by screening a synthetic hexapeptide combinatorial library. The identified peptides GMMWAI, MMHWAM, and MMHWFM caused an increase in intracellular Ca2+ in a concentration-dependent manner via phospholipase C activity in human neutrophils. The three peptides acted specifically on neutrophils and monocytes and not on other non-leukocytic cells. As a physiological characteristic of the peptides, we observed that the three peptides induced chemotactic migration of neutrophils as well as stimulated superoxide anion production. Studying receptor specificity, we observed that two of the peptides (GMMWAI and MMHWFM) acted on formyl peptide receptor (FPR)1 while the other peptide (MMHWAM) acted on FPR2. Since the three novel peptides were specific agonists for FPR1 or FPR2, they might be useful tools to study FPR1- or FPR2-mediated immune response and signaling.


Assuntos
Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Células NIH 3T3 , Neutrófilos/citologia , Células PC12 , Peptídeos/farmacologia , Receptores de Formil Peptídeo/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA