Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Medical Journal ; (24): 2563-2568, 2017.
Artigo em Inglês | WPRIM | ID: wpr-248945

RESUMO

<p><b>BACKGROUND</b>Lateral compartmental osteoarthritis (LCOA), a major complication after medial mobile-bearing unicompartmental knee arthroplasty (UKA), is highly associated with the increased stress of the lateral compartment. This study aimed to analyze the effects on the stress and load distribution of the lateral compartment induced by lower limb alignment and coronal inclination of the tibial component in UKA through a finite element analysis.</p><p><b>METHODS</b>Eight three-dimensional models were constructed based on a validated model for analyzing the biomechanical effects of implantation parameters on the lateral compartment after medial Oxford UKA: postoperative lower limb alignment of 3° valgus, neutral and 3° varus, and the inclination of tibial components placed in 4°, 2° valgus, square, and 2° and 4° varus. The contact stress of femoral and tibial cartilage and load distribution were calculated for all models.</p><p><b>RESULTS</b>In the 3° valgus lower limb alignment model, the contact stress of femoral (3.38 MPa) and tibial (3.50 MPa) cartilage as well as load percentage (45.78%) was highest compared to any other model, and was increased by 36.75%, 47.70%, and 27.63%, respectively when compared to 3° varus. In the condition of a neutral position, the outcome was comparable for the different tibial tray inclination models. The inclination did not greatly affect the lateral compartmental stress and load distribution.</p><p><b>CONCLUSIONS</b>This study suggested that slightly varus (undercorrection) lower limb alignment might be a way to prevent LCOA in medial mobile-bearing UKA. However, the inclination (4° varus to 4° valgus) of the tibial component in the coronal plane would not be a risk factor for LCOA in neutral position.</p>

2.
Chinese Medical Journal ; (24): 2873-2878, 2015.
Artigo em Inglês | WPRIM | ID: wpr-275601

RESUMO

<p><b>BACKGROUND</b>Controversies about the rational positioning of the tibial component in unicompartmental knee arthroplasty (UKA) still exist. Previous finite element (FE) studies were rare, and the results varied. This FE study aimed to analyze the influence of the tibial component coronal alignment on knee biomechanics in mobile-bearing UKA and find a ration range of inclination angles.</p><p><b>METHODS</b>A three-dimensional FE model of the intact knee was constructed from image data of one normal subject. A 1000 N compressive load was applied to the intact knee model for validating. Then a set of eleven UKA FE models was developed with the coronal inclination angles of the tibial tray ranging from 10° valgus to 10° varus. Tibial bone stresses and strains, contact pressures and load distribution in all UKA models were calculated and analyzed under the unified loading and boundary conditions.</p><p><b>RESULTS</b>Load distribution, contact pressures, and contact areas in intact knee model were validated. In UKA models, von Mises stress and compressive strain at proximal medial cortical bone increased significantly as the tibial tray was in valgus inclination >4°, which may increase the risk of residual pain. Compressive strains at tibial keel slot were above the high threshold with varus inclination >4°, which may result in greater risk of component migration. Tibial bone resection corner acted as a strain-raiser regardless of the inclination angles. Compressive strains at the resected surface slightly changed with the varying inclinations and were not supposed to induce bone resorption and component loosening. Contact pressures and load percentage in lateral compartment increased with the more varus inclination, which may lead to osteoarthritis progression.</p><p><b>CONCLUSIONS</b>Static knee biomechanics after UKA can be greatly affected by tibial component coronal alignment. A range from 4° valgus to 4° varus inclination of tibial component can be recommended in mobile-bearing UKA.</p>


Assuntos
Adulto , Humanos , Masculino , Artroplastia do Joelho , Métodos , Análise de Elementos Finitos , Articulação do Joelho , Cirurgia Geral , Estresse Mecânico , Tíbia , Cirurgia Geral , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA