Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 3423-3428, 2019.
Artigo em Chinês | WPRIM | ID: wpr-773701

RESUMO

To investigate the effect of triptolide on cognitive dysfunction in vascular dementia rats and its effect on SIRT1/NF-κB pathway,fifty healthy male Sprague-Dawley rats were randomly divided into 5 groups: Sham operation group( Sham group),vascular dementia model group( 2 VO group),triptolide intraperitoneal injection group( TR group),triptolide intraperitoneal injection + EX527 intracerebroventricular administration group( T+E group),EX527 intracerebroventricular administration group( EX527 group). After 4 weeks of modeling,Morris water maze test and object recognition test were used to evaluate the learning and memory ability of rats. The morphological changes of hippocampus in each group were observed in brain tissue. The chemical colorimetry was used to detect the activities of SOD and MDA in hippocampus. IL-6 and TNF-α levels were detected by ELISA. Western blot was used to detect the expression of SIRT1,NF-κB,IκBα and caspase 3 in hippocampus. The results showed that compared with the Sham group,the learning and memory ability of the vascular dementia model rats was reduced,the SOD activity in the hippocampus was decreased,the MDA activity and IL-6 level were increased,the neuronal degeneration changed significantly,the expression of SIRT1 and IκBα was decreased and the expression of caspase 3 and NF-κB was significantly increased. After intervention by triptolide,the level of oxidative stress and the degenerative changes in hippocampus were significantly slowed down. The expression of SIRT1 and IκBα protein was increased and the expression of caspase 3 and NF-κB was significantly decreased. While,after intervention by triptolide and EX527,the expression of SIRT1 was decreased,the levels of oxidative stress and neuronal degeneration in the hippocampus were aggravated,and the learning and memory ability was reduced. The results showed that triptolide could improve cognitive impairment in vascular dementia rats and its mechanism may be related to SIRT1/NF-κB signaling pathway.


Assuntos
Animais , Masculino , Ratos , Disfunção Cognitiva , Tratamento Farmacológico , Demência Vascular , Tratamento Farmacológico , Diterpenos , Farmacologia , Compostos de Epóxi , Farmacologia , Hipocampo , NF-kappa B , Metabolismo , Estresse Oxidativo , Fenantrenos , Farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1 , Metabolismo
2.
Asian Pacific Journal of Tropical Medicine ; (12): 288-292, 2016.
Artigo em Inglês | WPRIM | ID: wpr-820272

RESUMO

OBJECTIVE@#To study the effects of Transient receptor potential cation channel, subfamily V, member 1 (TRPV1) combined with lidocaine on status and apoptosis of U87-MG glioma cell line, and explore whether local anesthetic produces neurotoxicity by TRPV1.@*METHODS@#U87-MG cells were divided into control group, gene silencing group, empty vector group and TRPV gene up-regulation group. For cells in each group, flow cytometry was employed to detect the intracellular calcium ion concentration and mitochondrial membrane potential at different time point from cellular perspective. Cell apoptosis of U87-MG was assayed by flow cytometry and MTT from a holistic perspective.@*RESULTS@#Calcium ion concentration increased along with time. The concentration in TRPV1 gene up-regulation group was significantly higher than those in other groups at each time point (P < 0.05). After adding lidocaine, mitochondrial membrane potential in U87-MG significantly increased (P < 0.05). This increasing trend in TRPV1 gene up-regulation group was more significant than other groups (P < 0.05), while in TRPV1 gene silencing group, the trend significantly decreased (P < 0.05). Flow cytometry result and MTT result both showed that cell apoptosis in each group significantly increased after lidocaine was added (P < 0.05). This increasing trend in TRPV1 gene up-regulation group was more significant than other groups (P < 0.05), while in TRPV1 gene silencing group, the trend significantly decreased (P < 0.05). Moreover, apoptosis was more severe along with the increasing concentration of lidocaine (P < 0.05).@*CONCLUSIONS@#In this study, it was proved that lidocaine could dose-dependently induce the increase of intracellular calcium ion concentration, mitochondrial membrane potential and apoptosis in U87-MG glioma cell line. The up-regulation of TRPV1 enhanced cytotoxicity of lidocaine, which revealed the correlations between them. Lidocaine might have increased intracellular calcium ion concentration by activating TRPV1 gene and induced apoptosis of U87-GM glioma cell line by up-regulating mitochondrial membrane potential.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 288-292, 2016.
Artigo em Chinês | WPRIM | ID: wpr-951438

RESUMO

Objective: To study the effects of Transient receptor potential cation channel, subfamily V, member 1 (TRPV1) combined with lidocaine on status and apoptosis of U87-MG glioma cell line, and explore whether local anesthetic produces neurotoxicity by TRPV1. Methods: U87-MG cells were divided into control group, gene silencing group, empty vector group and TRPV gene up-regulation group. For cells in each group, flow cytometry was employed to detect the intracellular calcium ion concentration and mitochondrial membrane potential at different time point from cellular perspective. Cell apoptosis of U87-MG was assayed by flow cytometry and MTT from a holistic perspective. Results: Calcium ion concentration increased along with time. The concentration in TRPV1 gene up-regulation group was significantly higher than those in other groups at each time point (P < 0.05). After adding lidocaine, mitochondrial membrane potential in U87-MG significantly increased (P < 0.05). This increasing trend in TRPV1 gene up-regulation group was more significant than other groups (P < 0.05), while in TRPV1 gene silencing group, the trend significantly decreased (P < 0.05). Flow cytometry result and MTT result both showed that cell apoptosis in each group significantly increased after lidocaine was added (P < 0.05). This increasing trend in TRPV1 gene up-regulation group was more significant than other groups (P < 0.05), while in TRPV1 gene silencing group, the trend significantly decreased (P < 0.05). Moreover, apoptosis was more severe along with the increasing concentration of lidocaine (P < 0.05). Conclusions: In this study, it was proved that lidocaine could dose-dependently induce the increase of intracellular calcium ion concentration, mitochondrial membrane potential and apoptosis in U87-MG glioma cell line. The up-regulation of TRPV1 enhanced cytotoxicity of lidocaine, which revealed the correlations between them. Lidocaine might have increased intracellular calcium ion concentration by activating TRPV1 gene and induced apoptosis of U87-GM glioma cell line by up-regulating mitochondrial membrane potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA