Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Parasitol. latinoam ; 60(3/4): 105-121, dic. 2005. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-460425

RESUMO

El citocromo c catalizó la oxidación de las fenotiazinas (FTZ) en presencia de peróxido de hidrógeno. La formación del radical catiónico de promazina (PZ+.) se demostró por espectrofo-tometría y por su conversión a promazina sulfóxido La dihidrolipoamida deshidrogenasa (LADH) del Trypanosoma cruzi es inhibida irreversiblemente por el sistema citocromo c/H2O2 complementado con fenotiazinas. La inactivación de la LADH del parásito varía según la estructura de las FTZ, el tiempo de incubación del sistema pro-oxidante con la LADH, y la presencia de un antioxidante supresor de radicales FTZ+. Entre las 12 FTZ ensayadas, la promazina (PZ), tioridazina (TRDZ) y trimeprazina (TMPZ) fueron las más efectivas produciendo inactivaciones de 82 por ciento,76 por ciento y 72 por ciento, respectivamente, a los 90 min de incubación. El efecto de PZ (con grupo alquilamino en la posición N 10) disminuyó por modificación de su estructura en la posición 2 (efecto inactivante de PZ > cloropromazina (CPZ) > propionilpromazina (PPZ) > trifluopromazina (TFPZ) o en la posición 10 ( efecto inactivante de PZ > TMPZ > prometazina (PMTZ).El efecto de las FTZ con sustituyente piperidinil en N 10 dependió del grupo de la posición 2 ( SCH3, en TRDZ de mayor efecto; CN, en propericiazina (PCYZ), la de menor efecto entre las FTZ estudiadas). Parece que la presencia del sustituyente piperazinil en posición N 10 no tiene función importante en el efecto inactivante de las FTZ, el cual dependió de la estructura del grupo en la posición 2. El efecto de los compuestos con Cl en posición 2 (CPZ, procloroperazina (PCP), perfenazina (PFZ)) fue mayor que el obtenido con los compuestos CF3 (TFPZ, trifluoroperazina (TFP), flufenazina (FFZ), e independiente de la estructura del sustituyente N 10.El efecto de las FTZ sobre la LADH de T. cruzi depende, por lo menos en parte, de la estabilidad de los radicales FTZ+. generados por la actividad peroxidasa. La LADH T c, en comparación con la LADH de mamífero...


Cytochrome c catalyzed the oxidation of phenothiazines (PTZ) in the presence of hydrogen peroxide. The transient formation of the promazine radical cation (PZ+.) has been demonstrated by light absorption measurements as well as by its conversión to promazine sulfoxide. Trypanosoma cruzi dihydrolipoamide dehydrogenase (LADH T c) was irreversibly inhibited by treatment with cytochrome c (cyt c)/H2O2 system supplemented with PTZ. LADH T c inactivation depended on a) The PTZ structure b) Time of incubación with the complete oxidant system c) The presence of an antioxidant that intercept free radicals. PZ, thioridazine (TRDZ) and trimeprazine (TMPZ), were the most effective systems out of twelve PTZ studied, with inactivation values of 82, 76 and 72%, respectively, after 90 min of incubation. LADH T c inactivation by PZ (with alkylamine substituent at N 10 position) decreased by its structural modification at 2 position (inactivation PZ > chlorpromazine (CPZ) > propionylpromazine (PPZ)>trifluopromazine (TFPZ)) or at N 10 position (inactivation PZ > TMPZ > promethazine (PMTZ)) PTZ activity with piperidinyl substituent at N10 position depended on the group at 2 position (TRDZ, with thiomethyl group, has high inactivating effect on LADH T c; propericyazine (PCYZ), with cyano group, is much less active). Apparently, piperazinyl substituent at the N10 position on the phenothiazine have not an important function in the compound's inactivating effect on LADH T c. The effect of PTZ with Cl at 2 position (CPZ, prochlorperazine (PCP), perphenazine (PFZ)) was higher than the effect of compounds with CF3 in the same position (TFPZ,trifluoperazine (TFP),fluphenazine (FFZ) ) independent on the structure of substituents at N10 position. Production of PTZ+. radicals was essential for LADH T c inactivation and this effect depended on the stability of these free radicals. Comparision of inactivation values for LADH T c and mammalian LADH demonstrated...


Assuntos
Animais , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Fenotiazinas/farmacologia , Trypanosoma cruzi , Tripanossomicidas/farmacologia , Antioxidantes/farmacologia , Citocromos c/metabolismo , Di-Hidrolipoamida Desidrogenase , Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Fatores de Tempo , Trypanosoma cruzi/fisiologia
2.
Bol. Acad. Nac. Med. B.Aires ; 80(2): 323-343, jul.-dic. 2002. tab, graf
Artigo em Espanhol | LILACS | ID: lil-384016

RESUMO

Las fenotiazinas (FTZs) son agentes terapéuticos importantes especialmente como neurolépticos, no obstante sus efectos tóxicos secundarios. Algunas FTZs tienen también acción tripanocida sobre el Trypanosoma cruzi, agente causal de la enfermedad de Chagas, in vitro e in vivo. Esa actividad se atribuye a la molecula neutra aunque el tratamiento de las FTZs con peroxidasas produce los radicales catiónicos correspondientes (PTZ+À). En este trabajo demostramos que el tratamiento de varias FTZs con sistemas peroxidasa/H2O2' genera los radicales FTZ+À, potentes inhibidores de enzimas como la dihidrolipoamida deshidrogenasa (LADH) del T. cruzi. La inactivación de esas enzimas dependió de la actividad de la peroxidasa, la estructura de la FTZ y del tiempo de incubación del sistema inactivante con la enzima. Con el sistema mieloperoxidasa (MPO)/H2O2 con la mieloperoxidasa de leucocitos humanos, la Promazina (PZ), la Trimeprazina (TMPZ), La Tioridazina (TRDZ), la Prometazina (PMTZ) y la Clorpromazina (CPZ) resultaron inactivadores eficaces de la LADH, a la concentración 100 µM de FTZ, después de 30 minutos de incubación del sistema con la enzima. La Propionilpromazina resultó mucho menos activa y la Trifluopromazina (TFPZ) inactiva, de acuerdo a la estructura del sustituyente en la posición 2 de la mólecula de FTZ. Efectos similares se obtuvieron con el sistema Mb/H2O2', con mioglobina de músculo estriado como peroxidasa aunque con el mismo la influencia de la estructura de la FTZ fue menos notable que con la MPO. La acción de la peroxidasa en la inactivación de la LADH fue confirmada con la peroxidasa de rábano, que fue activa con todas las FTZs ensayadas. Resultados similares se obtuvieron con la LADH de miocardio, si bien con esta enzima el efecto de los sistemas peroxidasa/H2O2/FTZ fue significativamente menor (cerca de 50 por ciento) que con la enzima de T. cruzi. La formación de los radicales catiónicos de las FTZ se demostró con el sistema HRP/H2O2/TRDZ. El tiol N-acetilcisteína (NAC) inhibió completamente esa formación. Por consiguiente, tioles como el glutatión reducido, NAC, el Captopril y la Penicilamina previnieron la inactivación de las LADHs por el sistema MPO/H2O2/TRDZ. Los resultados presentados constituyen una contribución a la farmacología de las FTZ.


Assuntos
Cardiomiopatias , Fenotiazinas , Trypanosoma cruzi , Peroxidase , Tripanossomicidas
3.
Bol. Acad. Nac. Med. B.Aires ; 78(2): 357-379, jul.-dic. 2000. tab, graf
Artigo em Espanhol | LILACS | ID: lil-310989

RESUMO

La incubación de la tripanotiona reductasa (TR) de Trypanosoma cruzi con sistemas peroxidasa/H2O2/fenotiazina (FTZ) produjo la inhibición irreversible (inactivación) de TR. El grado de inactivación dependió de: (a) el tiempo de incubación de TR con el sistema peroxidasa/H2O2/FTZ; (b) la naturaleza de la peroxidasa y (c) la estructura de la FTZ. Con las FTZ más activas, la cinética de la inactivación presentó una fase inicial no mayor de 10 minutos, durante la cual TR perdió cerca del 90 por ciento de su actividad. Esa fase fue seguida por otra más lenta, y después de 30 minutos de incubación, TR fue completamente inactiva. Se ensayaron tres peroxidasas, a saber: la peroxidasa de rábano (HRP), la mieloperoxidasa de leucocitos (MPO) y la mioglobina modificada (Mb). En condiciones experimentales comparables, la actividad de las peroxidasas como componentes de los sistemas ensayados decreció en el orden indicado. Con el sistema HRP/H2O2/FTZ, la inactivación final de TR fue de 95-100 por ciento con Tioridazina (TRDZ), Promazina (PZ), Trimeprazina (TMPZ), Proclorpromazina (PCP), Propionilpromazina (PPZ) y Perfenazina (PFZ), todas en concentración 10 µM. Con los sistemas MPO/H2O2/FTZ, las FTZ más activas fueron PZ, TRDZ, TMPZ, PCP y Clorpromazina (CPZ). En iguales condiciones, los sistemas Mb/H2O2/FTZ también inactivaron a TR, utilizando PZ, TMPZ, TRDZ y CPZ. Grupos alquilamino, piperazinilo o piperidilo en la posición 10 (el N) y átomos o grupos -CI, -CF3, -SCH3, COCH2CH3 y -CN en la posición C2 de FTZ afectaron significativamente la actividad de las FTZs. El glutatión (GSH) previno la inactivación de TR por los sistemas HRP/H2O2/PZ y MPO/H2O2/PZ. Los sistemas HRP/H2O2/FTZ y MPO/H2O2/FTZ generaron los radicales catiónicos FTZú+, con estabilidad limitada por su conversión en fenotiazina-sulfoxidos (FTZ-SO), aparentemente inactivos sobre TR. El GSH reaccionó con los radicales catiónicos, regenerando las FTZ originales, lo que concuerda con la protección de TR por GSH frente a los sistemas peroxidasa/H2O2/PZ y, por lo tanto, con la intervención de los radicales catiónicos en la inactivación de TR por los mismos sistemas.


Assuntos
Animais , Antiprotozoários , Doença de Chagas , NADH NADPH Oxirredutases , Fenotiazinas , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi , Antiprotozoários , Cátions , Radicais Livres , Glutationa/metabolismo , Cinética , Estrutura Molecular , Oxirredução , Peroxidases , Peróxido de Hidrogênio/farmacologia , Fenotiazinas , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Relação Estrutura-Atividade
4.
Medicina (B.Aires) ; 55(5/1): 397-407, 1995. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-161615

RESUMO

Inactivation of lipoamide dehydrogenase (LipDH) by the Cu(II)/H2O2 Fenton system (SF-Cu(II): (5.0 microM Cu(II), 3.0 mM H2O2) was enhanced by catecholamines (CAs), namely, epinephrine, levoDOPA (DOPA), DOPAMINE, 6-hydroxyDOPAMINE (OH-DOPAMINE) and related compounds (DOPAC, CATECHOL, etc.). After 5 min incubation with the Cu(II)/H2O2/CA system (0,4 mM CA), the enzyme activity decayed as indicated by the following percentage values (mean +/- S.D.; in parenthesis, number of determinations): SF-Cu(II) alone, 43 +/- 10 (18); SF-Cu(II) + epinephrine, 80 +/- 9 (5); SF-Cu(II)'+ DOPA, 78 +/- 2 (4); SF + Cu(II) + DOPAMINE, 88 +/- 7 (5); SF-Cu(II) + OH-DOPAMINE 87 +/- 6 (7); SF-Cu(II) + DOPAC, 88 +/- 3 (6); SF-Cu(II) + catechol, 85 +/- 6 (5). In all cases P < 0,05, with respect to the SF-Cu(II) control sample. CAs effect was concentration-dependent and at the 0-100 microM concentration range, it varied with the CA structure. Above the 100 MicroM concentration, CAs were equally effective and produced 90-100 percent enzyme, inactivation (Figure 2). In the absence of oxy-radical generation, the enzyme specific activity (mean + S.D.) was 149 +/- 10 (24) micromol NADH/min/mg protein. Assay of HO. production by the Cu(II)/H2O2/CA system in the presence of deoxyribose (TBA assay) yielded values much greater than those obtained omitting CA. Hydroxyl radical production depended on the presence of Cu(II) and H2O2, and significant HO. values were obtained with OH-DOPAMINE, DOPAC, epinephrine, DOPAMINE, DOPA and catecol supplemented systems (Table 2). LipDH (1.0 microM) inhibited 50-80 percent deoxyribose oxidation, the inhibition depending on the CA structure (Table 2). Native catalase (20 microg/ml) and bovine serum albumin (40 microg/ml) effectively prevented LipDH inactivation by the Cu(II)/H2O2/CA system, denaturated catalase, SOD, 0,3 M mannitol, 6,0 mM ethanol and 0,2 M benzoate were less effective or did not protect LipDH (Table 3). Incubation of CAs with the Cu(II)H2O2 system produced a time and Cu(II)-dependent destruction of CAs, the corresponding o-quinone, production as illustrated with epinephrine (figures 6 and 7), as illustrated with epinephrine and DOPAMINE (Table 4). These results support LipDH inactivation by (a) reduction of Cu(II) to Cu(I) by CAs followed by Cu-catalyzed production of HO. from H2O2; (b) CA oxidation followed by the corresponding o-quinone interaction with LipDH. CAPTOPRIL, N-acetylcysteine, mercaptopropionylglycine and penicillamine prevented to various degree LipDH inactivation by the Cu(II)/H2O2/CA systems (Table 1). The former was the most effective and 0,4 mM CAPTOPRIL prevented about 95-100 percent the effect of Cu(II)/H2O2/CA systems supplemented with epinephrine, DOPAMINE and OH-DOPAMINE (Figures 3 and Table 1). LipDH increased and CAPTOPRIL inhibited epinephrine oxidation by Cu(II)/H2O2 (Figures 4 and 5). Since un-physiological concentrations of CAs and Cu(II) may be released in the myocardium after ischemia-reperfusion, the summarized observations may contribute to explain myocardial damage in that condition.


Assuntos
Catecol Oxidase/química , Catecolaminas/farmacologia , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Captopril/farmacologia , Catecolaminas/química , Cromatografia Líquida de Alta Pressão , Di-Hidrolipoamida Desidrogenase/metabolismo , Interações Medicamentosas , Espectrofotometria , Compostos de Sulfidrila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA