Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Surgery ; (12): 1275-1278, 2005.
Artigo em Chinês | WPRIM | ID: wpr-306122

RESUMO

<p><b>OBJECTIVE</b>To explore whether transplantation of autologous bone marrow stem cells might augment angiogenesis and collateral vessel formation in a canine model of hindlimb ischemia.</p><p><b>METHODS</b>CD34(+) stem cells were centrifugation through Ficoll and an immune magnetic cell sorting system from bone marrow (20 ml) of canine (n = 5) and induced into endothelial cells with VEGF in vitro, and expression of von Willebrand factor. Bilateral hindlimb ischemia was surgically induced in canines and Dil fluorescence labeled autologous stem cells were transplanted into the ischemic tissues.</p><p><b>RESULTS</b>Four weeks after transplantation, fluorescence microscopy revealed that transplanted cells were incorporated into the capillary network among preserved skeletal myocytes. The stem cells transplanted group had more angiographically detectable collateral vessels, a higher capillary density (12.0 +/- 2.8 vs. 5.0 +/- 1.6 per field; t = 4.17 P < 0.05) and a higher ABI (0.58 +/- 0.14 vs. 0.32 +/- 0.11; t = 2.95, P < 0.05).</p><p><b>CONCLUSIONS</b>Direct local transplantation of autologous bone marrow CD34(+) stem cells seems to be a useful strategy for therapeutic neovascularization in ischemic tissues in adults, consistent with "therapeutic vasculogenesis."</p>


Assuntos
Animais , Cães , Feminino , Masculino , Antígenos CD34 , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais , Biologia Celular , Transplante de Células-Tronco Hematopoéticas , Métodos , Células-Tronco Hematopoéticas , Química , Biologia Celular , Fisiologia , Membro Posterior , Isquemia , Terapêutica , Neovascularização Fisiológica
2.
Chinese Journal of Surgery ; (12): 435-438, 2004.
Artigo em Chinês | WPRIM | ID: wpr-299927

RESUMO

<p><b>OBJECTIVE</b>To exploration the endothelialization of prostheses with bone marrow CD(34)(+) cells.</p><p><b>METHODS</b>CD(34)(+) cells were isolated from bone marrow of carine by an immune magnetic cell sorting system and induced into endothelial cells with VEGF. Seeding the cells to PTFE prostheses which implanted the abdominal aorta artery (AAA) and inferior vena cava (IVC).</p><p><b>RESULTS</b>The isolated cells from bone marrow were CD(34)(+) by flow cytometer which could differentiate into endothelial cells in vascular endothelial growth factor (VEGF). The endothelial cells were identified by immunostaining and transmission electron microscope. The obliteration rate of the seeding grafts implanting AAA was 0%, the stenosis rate 12.5%; the obliteration rate implanting IVC 12.5%, the stenosis rate 25%.</p><p><b>CONCLUSION</b>CD(34)(+) cells were isolated from bone marrow by an immune magnetic cell sorting system and were able to be induced into endothelial cells with VEGF in vitro. PTFE prostheses seeding CD(34)(+) cells have the ideal endothelialization and patency.</p>


Assuntos
Animais , Cães , Feminino , Masculino , Antígenos CD34 , Metabolismo , Prótese Vascular , Implante de Prótese Vascular , Medula Óssea , Células da Medula Óssea , Metabolismo , Diferenciação Celular , Células Endoteliais , Citometria de Fluxo , Microscopia Eletrônica , Fator A de Crescimento do Endotélio Vascular , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA