Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Cellular and Molecular Immunology ; (12): 592-598, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981904

RESUMO

Objective To investigate the effects of lipopolysaccharide (LPS) on human pulmonary vascular endothelial cells (HPVECs) cytoskeleton and perform biological analysis of the microRNA (miRNA) spectrum. Methods The morphology of HPVECs was observed by microscope, the cytoskeleton by FITC-phalloidin staining, and the expression of VE-cadherin was detected by immunofluorescence cytochemical staining; the tube formation assay was conducted to examine the angiogenesis, along with cell migration test to detect the migration, and JC-1 mitochondrial membrane potential to detect the apoptosis. Illumina small-RNA sequencing was used to identify differentially expressed miRNAs in NC and LPS group. The target genes of differentially expressed miRNAs were predicted by miRanda and TargetScan, and the functional and pathway enrichment analysis was performed on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Further biological analysis of related miRNAs was carried out. Results After the LPS got induced, the cells became round and the integrity of cytoskeleton was destroyed. The decreased expression of VE-cadherin was also observed, along with the decreased ability of angiogenesis and migration, and increased apoptosis. Sequencing results showed a total of 229 differential miRNAs, of which 84 miRNA were up-regulated and 145 miRNA were down-regulated. The target gene prediction and functional enrichment analysis of these differential miRNA showed that they were mainly concentrated in pathways related to cell connection and cytoskeleton regulation, cell adhesion process and inflammation. Conclusion In vitro model of lung injury, multiple miRNAs are involved in the process of HPVECs cytoskeleton remodeling, the reduction of barrier function, angiogenesis, migration and apoptosis.


Assuntos
Humanos , Lipopolissacarídeos/farmacologia , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Pulmão/metabolismo , Citoesqueleto , Perfilação da Expressão Gênica
2.
Chinese Journal of Lung Cancer ; (12): 431-436, 2018.
Artigo em Chinês | WPRIM | ID: wpr-772421

RESUMO

BACKGROUND@#Tumor recurrence and drug resistance are the main causes of death in tumor patients. The family of acetaldehyde dehydrogenase (ALDH) is closely related to the proliferation, migration, invasion and resistance of tumor cells, and different ALDH subtypes are expressed in different tumor cells. The aim of this study is to elucidate the ALDH subtype in human lung adenocarcinoma HCC-827/GR cells, which resistant to the gefitinib.@*METHODS@#The human lung adenocarcinoma HCC-827 cells were used to generate the gefitinib-resistant HCC-827/GR cells; the expression of ALDH subtype in either HCC-827 or HCC-827/GR was detected by flow cytometry; The proliferative capacity and sensitivity to gefitinib of hcc-827/GR cells were analyzed by MTT assay before and after treatment with 100 μmol/L diethyllaminaldehyde (DEAB); Real-time quantitative PCR was used to detect the expression of ALDH subtypes at mRNA levels in hcc-827 cells and hcc-827/GR cells.@*RESULTS@#Compared with HCC-827 cells, the positive rate of ALDH in HCC-827/GR cells increased. The proliferation ability of HCC-827/GR cells decreased after treatment with 100 μmol/L DEAB. Compared with HCC-827 cells, the expression of ALDH1A1 and ALDH1L1 mRNA was increased in hcc-827/GR cells, but the ALDH3B2 expression was decreased.@*CONCLUSIONS@#ALDH might be used as a molecular biomarker to test the gefitinib-resistant to lung adenocarcinoma cancer cells, and the ALDH1A1 may play a role in gefitinib resistance in lung cancer.


Assuntos
Humanos , Adenocarcinoma , Patologia , Adenocarcinoma de Pulmão , Aldeído Oxirredutases , Genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Genética , Inibidores Enzimáticos , Farmacologia , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Patologia , Quinazolinas , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA