Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biomolecules & Therapeutics ; : 282-289, 2018.
Artigo em Inglês | WPRIM | ID: wpr-714738

RESUMO

Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥−34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3′ overhang at the 3′ end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.


Assuntos
Humanos , Di-Hidroxifenilalanina , Expressão Gênica , Melaninas , Melanócitos , Melanoma , Monofenol Mono-Oxigenase , RNA , Interferência de RNA , RNA Interferente Pequeno , Pigmentação da Pele , Tirosina , Pesos e Medidas
2.
Biomolecules & Therapeutics ; : 191-198, 2016.
Artigo em Inglês | WPRIM | ID: wpr-177270

RESUMO

The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant (K(d)) of quercetin and the VDR was 21.15 ± 4.31 µM, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.


Assuntos
Calcificação Fisiológica , Cálcio , Diferenciação Celular , Colecalciferol , Fluorescência , Homeostase , Simulação de Dinâmica Molecular , Quercetina , Receptores de Calcitriol , Ativação Transcricional , Vitamina D , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA