Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 76-80, 2014.
Artigo em Inglês | WPRIM | ID: wpr-636513

RESUMO

In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group (cultured in DMEM), a PLLA microsphere group (DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was (88.2±5.6)%; particle size was (16.8±3.1)%, drug loading was (4.05±0.3)%; encapsulation efficiency was (48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was (95.2 ±4.77)%, and the length of dorsal root ganglion (DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 76-80, 2014.
Artigo em Inglês | WPRIM | ID: wpr-251358

RESUMO

In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group (cultured in DMEM), a PLLA microsphere group (DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was (88.2±5.6)%; particle size was (16.8±3.1)%, drug loading was (4.05±0.3)%; encapsulation efficiency was (48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was (95.2 ±4.77)%, and the length of dorsal root ganglion (DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.


Assuntos
Animais , Feminino , Gravidez , Ratos , Axônios , Fisiologia , Células Cultivadas , Preparações de Ação Retardada , Química , Farmacocinética , Farmacologia , Composição de Medicamentos , Gânglios Espinais , Metabolismo , Fisiologia , Imuno-Histoquímica , Ácido Láctico , Química , Farmacocinética , Farmacologia , Microscopia Eletrônica , Microesferas , Células-Tronco Neurais , Fisiologia , Proteínas de Neurofilamentos , Metabolismo , Neurônios , Metabolismo , Compostos Organometálicos , Química , Farmacocinética , Farmacologia , Poliésteres , Polímeros , Química , Farmacocinética , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA