Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E627-E634, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987996

RESUMO

Long-term exposure to risk factors will lead to coronary atherosclerosis, which will lead to the formation and progression of coronary plaque. Early identification of high-risk plaque characteristics will help prevent plaque rupture or erosion, thus avoiding the occurrence of acute cardiovascular events. Biomechanical stress plays an important role in progression and rupture of atherosclerotic plaques. In recent years, non-invasive coronary computed tomography angiography (CCTA) computational fluid dynamics (CFD) modeling has made it possible to acquire the corresponding biomechanical stress parameters. These coronary biomechanical stress parameters, especially wall shear stress (WSS), will aid in the development of a more accurate clinical model for predicting plaque progression and major adverse cardiovascular events ( MACE ). In this review, the biomechanical stress and the role of WSS from CCTA in atherosclerosis were introduced, and the researches on the relationship between biomechanical stress from CCTA and coronary artery diseases were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA