RESUMO
Background/Aims@#This study aimed to examine the independent and synergistic association of aerobic physical activity and resistance exercise with nonalcoholic fatty liver disease (NAFLD) using a nationwide representative database. @*Methods@#This was a cross-sectional study using data from the Korea National Health and Nutritional Examination Survey between 2007 and 2010. Multiple logistic regression models were used to examine the independent and synergistic (additive interaction) associations of aerobic physical activity and resistance exercise with NAFLD after adjusting for multiple covariates. @*Results@#The prevalence of NAFLD was 26.2% for men and 17.6% for women. In the fully adjusted multiple logistic regression model to examine the independent association of aerobic physical activity or resistance exercise with NAFLD, the odds ratios for NAFLD were significantly decreased in both men (p=0.03) and women (p<0.01) who had highly active aerobic physical activity. Regarding the frequency of resistance exercise, the odds ratio for NAFLD was decreased in men who did resistance exercise ≥5 days per week (p=0.04), but not in women (p=0.19). How-ever, when investigating the synergistic associations of aerobic physical activity and resistance exercise, the odds ratios for NAFLD significantly decreased when the frequency of both exercises increased together in both men (p for interaction <0.01) and women (p for interaction<0.01). @*Conclusions@#Combining aerobic physical activity and resistance exercise had a synergistic preventive association for NAFLD in Korean men and women.
RESUMO
Angong Niuhuang Pills, a classical formula in traditional Chinese medicine, are lauded as one of the "three treasures of febrile diseases" and have been widely used in the treatment of diverse disorders with definite efficacy. However, there is still a lack of bibliometric analysis of research progress and development trend regarding Angong Niuhuang Pills. Research articles on Angong Niuhuang Pills in China and abroad(2000-2022) were retrieved from CNKI and Web of Science. CiteSpace 6.1 was used to visualize the key contents of the research articles. In addition, the research status of Angong Niuhuang Pills was analyzed by information extraction to allow insight into the research trends and hotspots about Angong Niuhuang Pills. A total of 460 Chinese articles and 41 English articles were included. Beijing University of Chinese Medicine and Sun Yat-Sen University were the research institutions that have published the largest amount of research articles in Chinese and English. The keyword analysis showed that the Chinese articles focused on cerebral hemorrhage, stroke, neurological function, coma, cerebral infarction, craniocerebral injury, and clinical application, while the English articles focused on the mechanisms of cerebral ischemia, stroke, heavy metal, blood-brain barrier, and oxidative stress. Stroke, blood-brain barrier, and oxidative stress were presumably the research hotspots in the future. At present, the research on Angong Niuhuang Pills is still in the developing stage. It is necessary to highlight the in-depth research on the active components and mechanism of action and carry out large-scale randomized controlled clinical trials to provide references for the further development and application of Angong Niuhuang Pills.
Assuntos
Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Medicina Tradicional Chinesa , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológicoRESUMO
Fracture is one of the common diseases in the department of orthopaedics and traumatology. Jiegu Qili Tablets(Capsules) are a Chinese patent medicine commonly used to treat fractures in clinical practice, which has been included in the Class A drugs of the catalog of medicines covered by the National Medical Insurance System. However, no consensus or guideline has yet been developed to guide clinicians based on an evidence-based approach in detail, which has severely limited the clinical value of this drug. According to the guiding principle of evidence as the key, consensus as the supplement, and experience as the reference, a consensus was developed in strict accordance with the steps stipulated in the expert consensus on clinical applications of proprietary Chinese medicines. Based on literature review and questionnaire survey, the consensus was a timely summary of the existing clinical evidence on the treatment of fractures with Jiegu Qili Tablets(Capsules), and incorporated the treatment experience of a number of clinical experts. The preparation process took more than a year and the consensus(GS/CACM 293-2021) was officially released by the China Association of Chinese Medicine in September 2021, with the participation of multidisciplinary experts from 27 organizations of Chinese and Western medicine and research institutions. This article introduces the background and objectives of the consensus in detail, and describes the main process of proposal, drafting, expert consensus, and consultation. In particular, 5 consensus recommendations and 12 consensus suggestions are formed with regard to the key issues of indications, treatment timing, dose, duration, and safety in the clinical application of Jiegu Qili Tablets(Capsules) for the treatment of fractures, which guide and standardize the rational use by clinicians and improve the accuracy and safety of drugs.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Cápsulas , Medicina Tradicional Chinesa , Consenso , Comprimidos , ChinaRESUMO
Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-β-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.
Assuntos
Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Scutellaria baicalensis/química , Berberina , Cromatografia Líquida de Alta Pressão , Espectrometria de MassasRESUMO
Single cell RNA sequencing (scRNA-seq) is an advanced technology to study the transcriptome information at the single cell level. The application of this technology can attribute to analyze the heterogeneous map of cells in the process of disease development, and precisely identify the specific cell subsets that are responsive to pharmacological therapy. Currently, scRNA-seq technology has been widely applied in the field of drug research, including studies on therapeutic targets, drug-induced adverse reactions, drug resistance and vaccine. This work reviews the application of scRNA-seq technology in drug discovery, which offers a scientific basis for personalized and accurate medication therapy.
RESUMO
ObjectiveOn the basis of determining the protective effect of berberine (BBR) on cerebral ischemia, crucial transcription factors (TFs) of BBR against cerebral ischemia was identified by using transcriptome and proteome sequencing. MethodThe model of middle cerebral artery occlusion (MCAO) was established by thread embolization. The sham operation group, model group, low-dose group of BBR (dose of 37.5 mg·kg-1·d-1) and high-dose group of BBR (75 mg·kg-1·d-1) were set up. The rats were killed after continuous intragastric administration for 7 days. The pharmacodynamics was evaluated by Longa score and cerebral infarction rate, and the expressions of inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 (MCP-1) were measured by enzyme-linked immunosorbent assay (ELISA). Then, RNA-Seq technique was used to detect the differentially expressed genes (DEGs) before and after BBR intervention, and DAVID 6.8 was used for enrichment analysis of DEGs. CatTFREs technique was used to detect differential TFs before and after BBR intervention, and DAVID 6.8 and STRING 11.0 were used for enrichment analysis and TFs association analysis. Finally, by integrating the activity of TFs and the changes of downstream target genes, crucial TFs were identified and the related regulatory network was constructed by Cytoscape 3.7.1. ResultCompared with the sham operation group, the neurological impairment was significant in the model group (P<0.01), and compared with the model group, the low and high dose BBR groups could significantly reduce the neurological function damage (P<0.01) and decrease the rate of cerebral infarction (P<0.01). Transcriptome data analysis showed that BBR was involved in the recovery process after cerebral ischemia mainly by affecting cell adhesion, brain development, neuron migration, calcium signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, inflammatory response and other related functions and signaling pathways. Proteomic data analysis showed that the differentially expressed TFs after BBR intervention interfered with cerebral ischemia mainly by regulating cell differentiation, immune system process, cell proliferation and other biological processes. In addition, integration analysis of TFs and DEGs revealed that transcription factor CP2-like 1 (TFCP2L1), nuclear factor erythroid-2 like 1 (NFE2L1), neurogenic differentiation protein 6 (NeuroD6) and POU domain, class 2, transcription factor 1 (POU2F1) were crucial TFs against cerebral ischemia-reperfusion injury mediated by BBR. ConclusionBBR has obvious protective effect on cerebral ischemia-reperfusion injury and its crucial TFs include TFCP2L1, NFE2L1, NeuroD6 and POU2F1.
RESUMO
The name, origin, place of origin, medicinal parts, harvesting and processing of lotus are verified by consulting ancient Chinese herbal medicines and medical books, combined with modern literature, providing a basis for the development of famous classical formulas containing lotus. According to textual research, the original base of lotus is Nelumbo nucifera since ancient times, rhizome (Nelumbinis Rhizomatis Nodus), leaf (Nelumbinis Folium), seed (Nelumbinis Semen), embryo (Nelumbinis Plumula), receptacle (Nelumbinis Receptaculum), stamen (Nelumbinis Stamen) and other medicinal parts of N. nucifera can be used as medicine and have different clinical effects. Nelumbinis Semen was originally produced in Henan, and then gradually expanded to Jiangnan. Today, it can be cultivated and planted throughout the country, with Fujian, Hunan, and Jiangxi as the authentic production areas. After combing the medicinal parts of N. nucifera and the historical evolution of its processing, it is suggested that the dried and mature fruits of N. nucifera taking in autumn and removing the shell and Nelumbinis Plumula should be used in Qingxin Lianziyin. Nelumbinis Folium in Erdongtang should be harvested in summer and autumn, and the raw products was used as medicine and processed in accordance with the provision of the 2020 edition of Chinese Pharmacopoeia.
RESUMO
Based on the ancient literature of all dynasties, this article makes a systematic textual research on the name, origin, producing area, quality, harvesting and processing of Zisu (Perillae) in the famous classical formulas, so as to clarify the information of the drug in different historical periods and provide a reference for the development and utilization of the related formulas. The main origin of Perillae in the ancient literature was Perilla frutescens var. frutescens (purple leaf type), followed by P. frutescens var. acuta (purple leaf type), but not Baisu. Modern chemical composition studies also show that there are obvious differences between Perillae and Baisu, which provides a scientific basis for distinguishing them. Although they are often treated as a species in plant classification, P. frutescens var. frutescens (purple leaf type) is recommended in the development of famous classical formulas, and Baisu should be avoided. Perillae is widely distributed, but its producing area did not record in most of the literature in the past dynasties, or the producing area is described as everywhere today. In the period of the Southern and Northern dynasties, the medicinal parts of Perillae included stems, leaves and seeds, and doctors in the Ming dynasty began to pay attention to the differentiation of different medicinal parts. The harvesting and processing methods of Perillae in the past dynasties are close to that of today. Perillae Fructus is mostly stir-fried and ground into medicine, Perillae Folium and Perillae Caulis are mainly simple cleansing. In production, we can refer to the 2020 edition of Chinese Pharmacopoeia.
RESUMO
Through consulting the ancient herbal and medical books, combined with the field investigation, the name, origin, collection and processing of Dendrobium medicinal materials were researched, which provided a basis for the development of famous classical formulas containing this kind of herbs. Due to the wide distribution of D. officinale, the Dendrobium species represented by D. officinale and D. huoshanense, which are short, fleshy and rich in mucus, should be the most mainstream of Dendrobium medicinal materials in previous dynasties. Compared with Shihu, Muhu with loose texture, long and hollow is born on trees. According to the characteristic description, it should be D. nobile, D. fimbriatum and so on, of which D. nobile was the mainstream. The Chinese meaning of Jinchai was confused in the past dynasties, so it was not suitable to be treated as a plant name. The production areas of Dendrobium medicinal materials in the past dynasties have changed with the discovery of varieties, artificial cultivation and other factors. Lu'an, Anhui province, was the earliest recorded in the Han and Wei dynasties. Since the Tang and Song dynasties, it had been extended to Guangdong and Guangxi, and it was considered that "Dendrobii Caulis in Guangnan was the best". In the Ming dynasty, Sichuan and Zhejiang products were highly praised, and in the Qing dynasty, Huoshan products were highly praised. Dendrobium medicinal materials had been used as medicine by stems in all dynasties. The medicinal materials were divided into fresh products and dry products. The fresh products can be used immediately after removing the sediment from the roots. The dry products need further processing, most of them used wine as auxiliary materials for steaming, simmer to paste or decoction into medicine. D. officinale and D. huoshanense have special processing specifications since the middle of Qing dynasty, that is, "Fengdou". According to the research results, in Ganluyin, the effect of Dendrobium medicinal materials is mainly heat clearing, and D. nobile with bitter taste can be selected. The main effect of Dendrobium medicinal materials in Dihuang Yinzi is tonic, D. officinale or D. huoshanense can be selected.
RESUMO
In this study, name, origin, producing areas, harvesting time and processing methods of ancient Alismatis Rhizoma were systematically researched by consulting the literature of ancient herbs, medical and prescription books, so as to provide a basis for the development of famous classical formula containing this herb. According to textual research, the main base of ancient Alismatis Rhizoma was Alisma plantago-aquatica and A. orientale. A. canaliculatum and A. gramineum and other genera were sometimes used as the source of Alismatis Rhizoma, there was a confusion of medicinal varieties. The earliest producing area of Alismatis Rhizoma was in today's Henan province, and later Hanzhong, Shaanxi province, became the high-quality producing area of Alismatis Rhizoma. Since the Ming dynasty, its production area expanded to Fujian. In the Qing dynasty, Jian'ou in Fujian was the authentic production area of Alismatis Rhizoma. In the period of the Republic of China, Sichuan and Jiangxi were added to the production areas of Alismatis Rhizoma. Based on the research results, it is suggested that the dried tubers of A. orientale from Fujian and Jiangxi or A. plantago-aquatica from Sichuan should be used in the famous classical formulas. In ancient times, Alismatis Rhizoma was processed by wine, but most of the standards and specifications in modern times are no longer included the processing specifications of Alismatis Rhizoma with wine. Although salt-processed Alismatis Rhizoma is commonly used in modern times, it didn't become one of the main processing methods until the Qing dynasty. According to the relevant national documents, it is suggested that Alismatis Rhizoma without clear processing requirements in famous classical formulas should be used as raw products, and the formulas with processing requirements should be selected as processed products such as salt and wine according to the meaning of the formulas.
RESUMO
By consulting the ancient herbal and medical books, combined with modern literature, the name, origin, geoherbalism, harvesting and processing changes of Bambusae Caulis in Taenias in famous classical formulas were sorted out. According to the research, ancient doctors only approved three kinds of bamboo medicinal materials, namely, Jinzhu (䈽竹), Kuzhu (苦竹) and Danzhu (淡竹), and took bamboo leaves, made Bambusae Caulis in Taenias and Zhuli (竹沥) for medicine. Bamboo medicinal materials with different origins have different properties, tastes and effects, after clinical optimization, it is gradually considered that Danzhu is the best source of Bambusae Caulis in Taenias and Zhuli. According to the morphological description of the original plants and the attached drawings, it is considered that the Danzhu in ancient Chinese materia medica should be Phyllostachys nigra var. henonis, which has been included in the 2020 edition of Chinese Pharmacopoeia as one of the genuine sources of Bambusae Caulis in Taenias. Therefore, It is suggested that P. nigra var. henonis can be added as the source of Bambusae Caulis in Taenias in famous classical formulas, and the medicinal part is the dry middle layer of its stem. Ginger-processed can increase the anti emetic effect of Bambusae Caulis in Taenias, and the three formulas involving Bambusae Caulis in Taenias from The Catalogue of Ancient Famous Classical Formulas (The First Batch) all contain ginger, and the processing method of Bambusae Caulis in Taenias is not marked in the original formula, so it is suggested to use raw products in the three formulas of Jupi Zhurutang, Wendantang and Zhurutang.
RESUMO
Based on various ancient documents such as materia medica, prescription books, classics and history, combined with relevant research materials in modern times, this paper made a textual research on the name, origin, geoherbalism, harvesting time, processing methods of Chuanxiong Rhizoma, which provides a basis for the development of famous classical formulas containing this herb. According to the textual research, the original name of Chuanxiong is Xiongqiong (芎䓖), which was first recorded in Shennong Bencaojing , there are many aliases and trade names in the past dynasties. Since the Song dynasty, doctors all take Xiongqiong produced in Sichuan as the best medicine, so they take Chuanxiong as the rectification of name. In the early stage, the origin of Chuanxiong Rhizoma was relatively complicated, and the main origin was Ligusticum chuanxiong, which was a cultivated and domesticated species of Ligusticum. However, wild related plants of Ligusticum are still used as medicine. After the Ming dynasty, new cultivated varieties appeared in various places, such as Jiangxi L. sinense cv. Fuxiong, which gradually turned to self-production and self-marketing after the Republic of China. After several changes in the authentic producing area of Chuanxiong Rhizoma, Tianshui in Gansu province was highly praised in the Tang dynasty, and Dujiangyan in Sichuan province was the best place in the Song dynasty and later dynasties. Chuanxiong Rhizoma has been widely used in the past dynasties as raw products, and it has also been processed with excipients. For example, wine-processed products can enhance the effect of promoting blood circulation, promoting Qi circulation and relieving pain. There are other processing methods such as stir-frying and vinegar processing. Chuanxiong Rhizoma in the famous classical formulas can be selected according to this research conclusion.
RESUMO
Through the combing of ancient books of Chinese herbal medicine in the past dynasties, a textual research of Coptidis Rhizoma involved the name, origin, medicinal parts, producing area, quality evaluation, harvesting and processing methods in famous classical formulas was conducted in this paper. After textual research, the mainstream varieties of Coptidis Rhizoma in the Ranunculaceae family before Tang and Song dynasties were Coptis chinensis and C. chinensis var. brevisepala, after the Ming and Qing dynasties, C. deltoidea, C. teeta and C. omeiensis were gradually praised. In ancient times, the authentic producing area of Coptidis Rhizoma has the characteristics of gradually moving to the west. The eastern Coptidis Rhizoma was highly praised in the early stage, while in the later stage, western Coptidis Rhizoma like chicken feet was highly praised. In the early stage, western Coptidis Rhizoma probably originated from C. chinensis and its genus, while Coptidis Rhizoma like chicken feet was cultivated, and no wild species has been found so far. As Coptidis Rhizoma has mixed use of multiple origins in ancient books of past dynasties, based on the current shortage of market resources in C. teeta and C. deltoidea, there are also endangered and protected plants of C. chinensis var. brevisepala and C. omeiensis, combined with the mainstream medicines and resources of past generations, it is recommended to choose C. chinensis as the base of the formulas. In ancient times, there were many processing methods for Coptidis Rhizoma, such as frying and wine-, ginger-, honey-processed. In the process of developing famous classical formulas, the appropriate processing specifications of Coptidis Rhizoma should be selected based on the original source records and the requirements of the medicinal material.
RESUMO
This paper made a systematic textual research on the historical evolution and changes of the name, origin, producing area, harvesting and processing methods of Jujubae Fructus used in famous classical formulas by referring to the ancient literature, so as to provide a basis for the sampling and research of the formulas containing the medicinal materials. According to textual research, there are many names of Jujubae Fructus, most of which are named by characters or producing areas, which are called Dazao. Ziziphus jujuba has always been the mainstream variety in all dynasties, and Z. jujuba var. inemmis has also been used. Considering that the differences between the two are not obvious, we can use Z. jujuba and Z. jujuba var. inemmis as the origins of Dazao. The germplasm resources of Jujubae Fructus are rich, which are distributed all over the country. Qingzhou (now Shandong), Jinzhou (now Shanxi) Jiangzhou (now Shanxi), Puzhou (now Shanxi) have been recorded as authentic producing areas of Jujubae Fructus in the past dynasties, especially in Shandong. At the beginning of the 21st century, the planting of Jujubae Fructus in Xinjiang gradually developed, and now has a high market recognition, becoming an emerging production area of high-quality samples. Harvest period of Jujubae Fructus is mostly August in the past dynasties, and this is basically the same as today. The main processing method is simple cleansing and drying. Through textual research, it is suggested that Jujubae Fructus in famous classical formulas should be mainly from Shandong, Shanxi and other traditional high-quality producing areas, the processing method should follow the 2020 edition of Chinese Pharmacopoeia for simple cleansing and drying.
RESUMO
Based on the ancient literature of all dynasties, this article makes a systematic textual research on the name, origin, producing area, quality, harvesting and processing of Magnoliae Officinalis Cortex used in the famous classical formulas, and clarifies its information of each link in different historical periods, so as to provide a reference and basis for the development and utilization of the related formulas. The results showed that the main varieties of Magnoliae Officinalis Cortex were Magnolia officinalis or M. officinalis var. biloba. The main production areas are Hubei, Sichuan, Chongqing and other places, forming the famous authentic medicine. The processing methods of the past dynasties are mainly cleansing and processing with ginger. In the formulas clearly marked with ginger processing, ginger-processed products is suggested to choose. If not clearly marked, raw or ginger-processed products can be used as needed.
RESUMO
Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing methods of Asini Corii Colla, so as to provide a basis for the development of the famous classical formulas containing the medicinal material. Before the Tang dynasty, cow leather was the main source of Asini Corii Colla, and donkey was rare as an introduced species. From the end of Tang dynasty to Song dynasty, due to the development of doctors' understanding of the properties and effects of medicines, with the increase of the number of donkeys and the limitation of the use of cow leather, the source of Asini Corii Colla changed from cow leather to donkey skin. During the Ming and Qing dynasties, the theory of medicine property was further developed, and all doctors basically agreed that black donkey skin and E-well water were two essential factors for making genuine Asini Corii Colla. Therefore, it is suggested that Asini Corii Colla should take Equus asinus as the authentic origin in the development of the famous classical formulas, attach importance to the quality of water source, take Liaocheng in Shandong province as the authentic producing area, and the processing should be carried out in accordance with the requirements of the 2020 edition of Chinese Pharmacopoeia.
RESUMO
Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing of Poria, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. The description of Poria and the characteristics of the attached figures in the Chinese herbal literature of the past dynasties are consistent with Poria cocos. The medicinal parts are dried sclerotia or P. cocos peel. Poria was originally produced in Taishan, Shandong province. In the Tang dynasty, along with the change of pine forest resources, producing area of Poria was transferred to Huashan area in Shaanxi province. In the Ming dynasty, the authentic producing area was transferred to Yunnan, and has continued to now. In ancient times, the processing methods of Poria were steaming, boiling, slicing, mashing and other subsequent processing after peeling. It is suggested that Poria in famous classical formulas should be sliced according to the 2020 edition of Chinese Pharmacopoeia.
RESUMO
Through consulting the ancient herbal medicine, prescription books and medical books, combined with modern relevant literature, standards and other information, this paper made a textual research on the name, origin, producing areas, harvesting and processing methods of Astragali Radix according to different historical development periods, providing a basis for the development of famous classical formulas containing Astragali Radix. According to the textual research, the original name of Astragali Radix is Huangqi, and "Qi" originally refers to the medicinal material Zhimu. Some people began to mistake it for Huangqi in the Ming dynasty, and then gradually used Astragali Radix as a medicinal material. The mainstream basis of Astragali Radix can be determined as the dried roots of Astragalus membranaceus var. mongholicus or A. membranaceus. In different historical periods, A. floridus, A. chrysopterus, A. emestii and other plants of Astragalus or even non-Astragalus were used as local Astragali Radix. The earliest production areas of Astragali Radix were Sichuan, Shaanxi, and Gansu, and then gradually expanded to the northeast. Since the Song dynasty, Mianqi in Shanxi province has been regarded as the genuine variety. In the Qing dynasty, besides Shanxi province, Inner Mongolia was also regarded as a genuine place. In the Republic of China, Huangqi produced in northeast China was praised highly. It is mainly produced in Shanxi, Inner Mongolia, Gansu, northeast and other provinces. The main commodity is cultivated products, and the quality of wild imitation cultivation in Datong and Xinzhou is better than other places. There are many processing methods of Huangqi recorded in the materia medica and prescription books, most of which are raw products, and honey processing is the mainstream of processed products. Based on the current situation of resource cultivation and production, 11 famous classical formulas in The Catalogue of Ancient Famous Classical Formulas (The First Batch) containing Huangqi suggested that all use A. membranaceus var. mongholicus, especially those from Datong and Xinzhou in Shanxi Province. In addition to honey processing of Qingxin Lianziyin, it is suggested to use raw products for other formulas.
RESUMO
With the development of omics technology, the construction of disease networks has been widely used in the study of complex diseases. It has been widely used to construct disease networks using systems biology technology to study complex diseases. The mechanism exploration model of disease molecular network which uses the method of constructing disease networks, simulates the occurrence of diseases, explores the core development mechanism of complex diseases, and then predicts biomarkers and exploits the mechanism of drug action provided many new thoughts for the prevention and treatment of complex diseases. Nowadays, the research on the mechanism of myocardial infarction caused by myocardial ischemia and heart failure after myocardial infarction is still very important. However, the research of the molecular network of myocardial infarction and heart failure diseases is usually limited to a few targets and pathways, so it is not able to comprehensively and systematically explain the disease process. Furthermore, authors outlined the typical biological process of "myocardial infarction-heart failure" and related targets from the pathophysiological level, and summarized the existing methods of constructing dynamic networks for heart diseases and other diseases. Based on the dynamic molecular network construction methods of cardiac diseases and other diseases, this paper discusses the construction of the dynamic molecular network of myocardial infarction and heart failure, in order to understand the evolution of myocardial infarction and heart failure more accurately and explore the importance of the dynamic molecular network of the disease process for the study of disease mechanism.
RESUMO
ObjectiveBased on the protective effect of Dengzhan Shengmai capsules (DZSM) on chronic cerebral hypoperfusion (CCH), network pharmacology was employed to investigate the molecular mechanism. MethodCCH model was established by right common carotid artery ligation. The mice were divided into sham operation group, model group, ginaton group (48 mg·kg-1), DZSM low- and high-dose groups (0.040 5, 0.162 g·kg-1). The efficacy was evaluated by the Morris water maze test and open-field test. The underlying mechanism of DZSM for CCH was analyzed by network pharmacology and verified by molecular biology experiments. PubChem, GeneCards, Metascape and other databases were used for targets collection and enrichment analysis. Besides, the association of ingredients targets of DZSM with disease targets of CCH, core target network and chemical components-core targets-pathways network were constructed by STRING 11.0 and Cytoscape 3.7.1. ResultThe escape latency of CCH mice significantly shortened on the 3rd to 5th day after DZSM low-dose treatment, the crossing times, time spent in the target quadrant, movement distance and distance in the central region of CCH mice significantly increased after DZSM low-dose and high-dose treatment. The results of network pharmacology indicated that DZSM might play a key role by regulating inflammatory response, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, cytokine-cytokine receptor interaction, tumor necrosis factor (TNF) signaling pathway, blood circulation, angiogenesis, extracellular matrix and other related biological processes and pathways, and acting as targets such as interleukin-6 (IL-6), TNF, insulin-like growth factor 1 (IGF1), vascular endothelial growth factor A (VEGFA), epidermal growth factor (EGF). The results of biological experiments showed that DZSM could reduce the expression of IL-6 in brain tissue of CCH mice. ConclusionDZSM provides a protective effect during CCH, and its multi-component, multi-pathway, multi-target mechanism is also revealed, which provides a basis for further study of the mechanism.