Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1794-1808, 2018.
Artigo em Chinês | WPRIM | ID: wpr-776289

RESUMO

In order to clarify dynamic change of microbial community composition and to identify key functional bacteria in the cellulose degradation consortium, we studied several aspects of the biodegradation of filter papers and rice straws by the microbial consortium, the change of substrate degradation, microbial biomass and pH of fermentation broth. We extracted total DNA of the microbial consortium in different degradation stages for high-throughput sequencing of amplicons of bacterial 16 S rRNA genes. Based on the decomposition characteristics test, we defined the 12th, 72nd and 168th hours after inoculation as the initial stage, peak stage and end stage of degradation, respectively. The microbial consortium was mainly composed of 1 phylum, 2 classes, 2 orders, 7 families and 11 genera. With cellulose degradation, bacteria in the consortium showed different growth trends. The relative abundance of Brevibacillus and Caloramator decreased gradually. The relative abundance of Clostridium, Bacillus, Geobacillus and Cohnella increased gradually. The relative abundance of Ureibacillus, Tissierella, Epulopiscium was the highest in peak stage. The relative abundance of Paenibacillus and Ruminococcus did not change obviously in each stage. Above-mentioned 11 main genera all belonged to Firmicutes, which are thermophilic, broad pH adaptable and cellulose or hemicellulose degradable. During cellulose degradation by the microbial consortium, aerobic bacteria were dominant functional bacteria in the initial stage. However, the relative abundance of anaerobic bacteria increased gradually in middle and end stage, and replaced aerobic bacteria to become main bacteria to degrade cellulose.


Assuntos
Bactérias , Classificação , Metabolismo , Biodegradação Ambiental , Celulose , Metabolismo , DNA Bacteriano , Genética , Consórcios Microbianos , RNA Ribossômico 16S , Genética
2.
Chinese Journal of Biotechnology ; (12): 506-515, 2017.
Artigo em Chinês | WPRIM | ID: wpr-310604

RESUMO

Environmental problems are the most serious challenges in the 21st century. With the rapid development of modern industry and agriculture, ecological and environmental deterioration have become the most important factors to restrict the sustainable development of social economy. Microbial cells have strong ability for environmental remediation, but their evolution speed is slower than the speed of emerging pollutants. Therefore, the treatment using the synthetic biology is in urgent need. Full understanding of the microbial degradation characteristics (pathways) of refractory organic pollutants with the help of abundant microbial and gene resources in China is important. Using synthetic biology to redesign and transform the existing degrading strain will be used to degrade particular organic pollutants or multiple organic pollutants. For the complex pollutants, such as wastewater, based on the establishment of metabolic or regulation or resistance related gene modules of typical organic pollutants, artificial flora could be designed to solve the complex pollutants. The rational design and construction of engineering bacteria for typical environmental organic pollutants can effectively promote microbial catabolism of emerging contaminants, providing technical support for environmental remediation in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA