Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E568-E573, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987987

RESUMO

Objective A practical and highly accurate algorithm for dynamic monitoring of plantar pressure was proposed, the magnitude of vertical ground reaction force (vGRF) during walking was measured by a capacitive insole sensor, and reliability of the prediction accuracy was verified. Methods Four healthy male subjects were require to wear capacitive insole sensors, and their fast walking and slow walking data were collected by Kistler three-dimensional (3D) force platform. The data collected by the capacitive insole sensors were pixelated, and then the processed data were fed into a residual neural network, ResNet18, to obtain high-precision vGRF. Results Compared with analysis of the data collected from Kister force platform, the normalized root mean square error (NRMSE) for fast walking and slow walking were 8.40% and 6.54%, respectively, and the Pearman correlation coefficient was larger than 0.96. Conclusions This study provides a novel algorithm for dynamic measurement of GRF in mobile scenarios, which can be used for estimation of complete GRF outside the laboratory without being constrained by the number and location of force plates. Potential application areas include gait analysis and efficient capture of pathological gaits.

2.
Journal of Biomedical Engineering ; (6): 421-428, 2018.
Artigo em Chinês | WPRIM | ID: wpr-687613

RESUMO

At present the parkinsonian rigidity assessment depends on subjective judgment of neurologists according to their experience. This study presents a parkinsonian rigidity quantification system based on the electromechanical driving device and mechanical impedance measurement method. The quantification system applies the electromechanical driving device to perform the rigidity clinical assessment tasks (flexion-extension movements) in Parkinson's disease (PD) patients, which captures their motion and biomechanical information synchronously. Qualified rigidity features were obtained through statistical analysis method such as least-squares parameter estimation. By comparing the judgments from both the parkinsonian rigidity quantification system and neurologists, correlation analysis was performed to find the optimal quantitative feature. Clinical experiments showed that the mechanical impedance has the best correlation (Pearson correlation coefficient = 0.872, < 0.001) with the clinical unified Parkinson's disease rating scale (UPDRS) rigidity score. Results confirmed that this measurement system is capable of quantifying parkinsonian rigidity with advantages of simple operation and effective assessment. In addition, the mechanical impedance can be adopted to help doctors to diagnose and monitor parkinsonian rigidity objectively and accurately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA