Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Lipid and Atherosclerosis ; : 8-22, 2020.
Artigo em Inglês | WPRIM | ID: wpr-786084

RESUMO

Post-transcriptional regulations of mRNA transcripts such as alternative splicing and alternative polyadenylation can affect the expression of genes without changing the transcript levels. Recent studies have demonstrated that these post-transcriptional events can have significant physiological impacts on various biological systems and play important roles in the pathogenesis of a number of diseases, including cancers. Nevertheless, how cellular signaling pathways control these post-transcriptional processes in cells are not very well explored in the field yet. The mammalian target of rapamycin complex 1 (mTORC1) pathway plays a key role in sensing cellular nutrient and energy status and regulating the proliferation and growth of cells by controlling various anabolic and catabolic processes. Dysregulation of mTORC1 pathway can tip the metabolic balance of cells and is associated with a number of pathological conditions, including various types of cancers, diabetes, and cardiovascular diseases. Numerous reports have shown that mTORC1 controls its downstream pathways through translational and/or transcriptional regulation of the expression of key downstream effectors. And, recent studies have also shown that mTORC1 can control downstream pathways via post-transcriptional regulations. In this review, we will discuss the roles of post-transcriptional processes in gene expression regulations and how mTORC1-mediated post-transcriptional regulations contribute to cellular physiological changes. We highlight post-transcriptional regulation as an additional layer of gene expression control by mTORC1 to steer cellular biology. These emphasize the importance of studying post-transcriptional events in transcriptome datasets for gaining a fuller understanding of gene expression regulations in the biological systems of interest.


Assuntos
Processamento Alternativo , Doenças Cardiovasculares , Conjunto de Dados , Expressão Gênica , Poliadenilação , RNA Mensageiro , Sirolimo , Controle Social Formal , Transcriptoma
2.
Endocrinology and Metabolism ; : 413-421, 2017.
Artigo em Inglês | WPRIM | ID: wpr-149600

RESUMO

Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway.


Assuntos
Humanos , Eucariotos , Expressão Gênica , Metabolismo , Poliadenilação , Precursores de RNA , RNA Mensageiro , Proteínas de Ligação a RNA , Serina-Treonina Quinases TOR , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA