Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Burns ; (6): 640-649, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940970

RESUMO

Objective: To investigate the effects of methacrylic anhydride gelatin (GelMA) hydrogel loaded with silver and recombinant human basic fibroblast growth factor (rh-bFGF) on deep partial-thickness burn wounds in rabbits. Methods: The experimental research method was adopted. Low-concentration GelMA materials, medium-concentration GelMA materials and high-concentration GelMA materials containing different concentrations of methacrylic anhydride (MA) were prepared, after adding photoinitiator, low-concentration GelMA hydrogels, medium-concentration GelMA hydrogels, and high-concentration GelMA hydrogels were obtained, respectively. The nuclear magnetic resonance spectroscopy was performed to detect the hydrogen nuclear magnetic resonance spectra of the above-mentioned three concentrations of GelMA materials, and to calculate the degree of substitution according to the spectrum diagram. The three-dimensional microstructure and pore size of 3 types of above-mentioned GelMA hydrogels were detected by field emission scanning electron microscopy (FESEM), with 9 samples measured. According to the selected concentration of MA, ten kinds of solutions of GelMA with different concentration of silver (silver-containing GelMA) were synthesized, and the silver-containing GelMA solution of each concentration was divided into three parts, and then exposed to ultraviolet light lasting for 20, 25, and 35 s, respectively. After adding photoinitiator,the corresponding silver-containing GelMA hydrogels were obtained. The residual degradation rate of silver-containing GelMA hydrogel with different photocrosslinking times was detected by collagenase degradation method at degradation of 12, 24, 36, and 48 h; and the time required for complete degradation was detected, and the sample number was 5. The inhibition zone diameter of GelMA hydrogel under above screened photocrosslinking times containing 10 concentrations of silver against Staphylococcus aureus was measured to reflect its antibacterial ability, and the sample numbers were all 5. The silver-containing GelMA hydrogel with statistical significance compared with the antibacterial circle diameter of the silver-containing GelMA hydrogel containing the lowest concentration (no silver) was considered as having antibacterial activity. The three-dimensional microstructure and pore size of the silver-containing GelMA hydrogels with antibacterial activity and the lowest drug concentration selected were detected by FESEM, and the sample numbers were all 9. The freeze-dried alone GelMA hydrogel and the freeze-dried silver-containing GelMA hydrogel were soaked in phosphate buffer solution for 24 h, respectively, then the swelling rate of the two GelMA hydrogel were calculated and compared by weighing method, and the sample number was 5. GelMA hydrogel containing silver and rh-bFGF, namely compound hydrogel for short, was prepared according to the preliminary experiment and the above experimental results. The appearance of the composite hydrogel was observed in general, and its three-dimensional microstructure and pore size were detected by FESEM. The deep partial-thickness burn wound was made on the back of 30 rabbits (aged 4-6 months, female half and half). Meanwhile, with the rabbit head as the benchmark, the wounds on the left side of the spine were treated as composite hydrogel treatment group, and the wounds on the right side were treated as gauze control group, and which were treated accordingly. On post injury day (PID) 3, 7, 14, 21, and 28, the healing of wounds in the two groups was observed. On PID 7, 14, 21, and 28, the wound healing area was recorded and the healing rate was calculated, with a sample number of 30. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and independent sample t test. Results: The substitution degree among low-concentration GelMA materials, medium-concentration GelMA materials, and high-concentration GelMA materials was significantly different (F=1 628.00, P<0.01). The low-concentration GelMA hydrogel had a loose and irregular three-dimensional spatial network structure with a pore size of (60±17) μm; the medium-concentration GelMA hydrogel had a relatively uniform three-dimensional spatial network and pore size with a pore size of (45±13) μm; the high-concentration GelMA hydrogel had the dense and disordered three-dimensional spatial network with a pore size of (25±15) μm, the pore sizes of 3 types of GelMA hydrogels were significantly differences (F=12.20, P<0.01), and medium concentration of MA was selected for the concentration of subsequent materials. The degradability of silver-containing GelMA hydrogels with different concentrations of the same photocrosslinking time was basically same. The degradation residual rates of silver-containing GelMA hydrogels with 20, 25, and 35 s crosslinking time at 12 h were (74.2±1.7)%, (85.3±0.9)%, and (93.2±1.2)%, respectively; the residual rates of degradation at 24 h were (58.3±2.1)%, (65.2±1.8)%, and (81.4±2.6)%, respectively; the residual rates of degradation at 36 h were (22.4±1.9)%, (45.2±1.7)%, and (68.1±1.4)%, respectively; the residual rates of degradation at 48 h were (8.2±1.7)%, (32.4±1.3)%, and (54.3±2.2)%, respectively, and 20, 25, and 30 s photocrosslinking time required for complete degradation of silver-containing GelMA hydrogels were (50.2±2.4), (62.4±1.4), and (72.2±3.2) h, and the difference was statistically significant (F=182.40, P<0.01), 25 s were selected as the subsequent photocrosslinking time. The antibacterial diameters of 10 types of silver-containing GelMA hydrogels against Staphylococcus aureus from low to high concentrations were (2.6±0.4), (2.5±0.4), (3.2±0.4), (12.1±0.7), (14.8±0.7), (15.1±0.5), (16.2±0.6), (16.7±0.5), (16.7±0.4), and (16.7±0.6) mm, respectively, and which basically showed a concentration-dependent increasing trend, and the overall difference was statistically significant (F=428.70, P<0.01). Compared with the silver-containing GelMA hydrogel with the lowest concentration, the antibacterial circle diameters of other silver-containing GelMA hydrogels with antibacterial ability from low to high concentration were significantly increased (with t values of 26.35, 33.84, 43.65, 42.17, 49.24, 55.74, and 43.72, respectively, P<0.01). The silver-containing GelMA hydrogel with the antibacterial diameter of (12.1±0.7) mm had the lowest antibacterial activity against Staphylococcus aureus and the lowest drug loading concentration, and the concentration of silver was selected for the concentration of subsequent materials. The microscopic morphology of the silver-containing GelMA hydrogel containing silver element with a pore size of (45±13) μm had a regular and linear strip-like structure. After soaking for 24 h, the swelling ratio of silver-containing GelMA hydrogel was similar to that of alone GelMA hydrogel. The composite hydrogel was colorless, clear and transparent, and its three-dimensional microstructure was a regular and uniform grid, with a filament network structure inside, and the pore size of (40±21) μm. On PID 3, a large amount of necrotic tissue and exudate of rabbit wound in composite hydrogel group were observed, and scattered scabs, a small amount of necrotic tissue and exudate of rabbit wound in gauze control group were observed. On PID 7, the area of rabbit wound in composite hydrogel group was significantly reduced, and adhesion of rabbit wound and gauze in gauze control group was observed. On PID 14, In composite hydrogel group, the rabbit wound surface was ruddy, and the growth of granulation tissue was observed, and in gauze control group, the rabbit wound base was pale, and the blood supply was poor. On PID 21, the rabbit wounds in composite hydrogel group healed completely, and rabbit wound in gauze control group had healing trend. On PID 28, new hair could be seen on rabbit wound surface in composite hydrogel group; oval wound of rabbit in gauze control group still remained. On PID 7, 14, 21, and 28, the wound healing areas of rabbit in composite hydrogel group were significantly larger than those in gauze control group (with t values of 2.24, 4.43, 7.67, and 7.69, respectively, P<0.05 or P<0.01). Conclusions: The medium-concentration GelMA hydrogel has good physical and chemical properties in terms of swelling and degradability. The screened silver-containing GelMA hydrogels had the lowest antibacterial activity and the lowest drug loading concentration. Composite hydrogel can significantly shorten the healing time of deep partial-thickness burn wounds in rabbits.


Assuntos
Animais , Feminino , Humanos , Coelhos , Anidridos , Antibacterianos , Queimaduras/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos , Gelatina/farmacologia , Hidrogéis/farmacologia , Proteínas Recombinantes , Infecções Estafilocócicas , Staphylococcus aureus
2.
Chinese Journal of Tissue Engineering Research ; (53): 1593-1598, 2018.
Artigo em Chinês | WPRIM | ID: wpr-698583

RESUMO

BACKGROUND: Compound gelatin-methacryloyl (GelMA) hydrogel has been shown to have unique advantages in bone, cartilage, myocardium, and vascular regeneration.OBJECTIVE: To summarize the novel progress of compound GelMA hydrogel for bone tissue engineering. METHODS: PubMed database and CNKI database from 2010 to 2017 were searched by using the keywords of "gelatin, methacrylamide, hydrogel, hydroxyapatite, bone tissue engineering, bone regeneration, seed cells, microenvironment" in Chinese and English, respectively. RESULTS AND CONCLUSION: Inorganic components can be added in a specific way into the compound GelMA hydrogel to prepare tissue-engineered bone using photolithography, microfluidics, microfabrication and 3D printing techniques. The prepared tissue-engineered bone has similar structural, mechanical and biological properties to natural bone tissue, and importantly, it has osteogenic ability. Gene-modified seed cells that are co-cultured with the compound GelMA hydrogel in a 3D environment are found to grow well and express some genes related to bone regeneration and vascular regeneration. Therefore, the compound GelMA hydrogel has a good osteogenesis effect in vitro,which is an excellent material for bone tissue engineering.

3.
Chinese Journal of Tissue Engineering Research ; (53): 323-328, 2018.
Artigo em Chinês | WPRIM | ID: wpr-698380

RESUMO

BACKGROUND: Gelatin methacryloyl has been widely used in the field of tissue engineering, as it has suitable biological properties, tunable physical and chemical properties, non-cytotoxic and non-immunogenicity.OBJECTIVE: To summarize the latest advances in the repair of skin and soft tissue damage using gelatin methacryl hydrogel materials. METHODS: PubMed and SciFinder were retrieved for articles concerning gelatin methacrylate hydrogels published from January 2007 to August 2017. The key words were "seed cell, skin regeneration, wound vascularization, gelatin, gelatin methacryloyl, scaffold material, wound healing, microenvironment, tissue construction, skin tissue engineering". RESULTS AND CONCLUSION: The gelatin methacryloyl hydrogel is very similar to the native extracellular matrix, and has a cell adhesion site, a matrix metalloproteinase-reactive peptide-based sequence and a cross-linkable property exhibiting good tissue affinity. The hydrogel has adjustable physical and chemical properties, a certain degree of adhesion and biodegradability, which make it an ideal cell scaffold, allowing all kinds of cells to proliferate and extend on its surface. Therefore, gelatin methacrylamide hydrogel has broad prospects in the skin tissue engineering, which can accelerate wound vascularization and epithelial tissue regeneration, improve wound healing rate, reduce the probability of infection, and improve the patient's quality life. The gelatin methacrylamide hydrogen is proved to provide an efficient and portable gel dressing for burn wounds and war wounds, and it can also be used to fill skin and soft tissue defects such as trauma and ulcers, and cover cosmetic incisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA